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By analysing the uniform attractor for multi-valued processes, we study the
long-time behaviour of the solutions of a model of non-autonomous
porous-medium equations. The result is obtained by using the a priori
estimates and suitable compactness arguments.
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non-autonomous; uniform attractors
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1. Introduction

Let � be a bounded domain in R
N (N5 2) with a smooth boundary @�. We consider

the following problem

@u

@t
� divð�ðxÞr’ðuÞÞ þ f ðt, uÞ ¼ gðx, tÞ, x2�, t4 �, ð1:1Þ

ujt¼� ¼ u�ðxÞ, x2�, ð1:2Þ

uj@� ¼ 0, ð1:3Þ

where � 2R, and the functions �, ’, f and g satisfy some conditions specified later.
The equation of type (1.1) represents the motion of gas through a porous medium

where u(x, t) stands for the gas density. The original model was established by the
mass conservation law as follows. Let V be the velocity. Then

ut þ divðuVÞ ¼ f ðuÞ, ð1:4Þ

where f(u) models the effects of reaction or absorption. In the case of a
non-homogeneous medium, V ¼��(x)rP(u). Here, P is the pressure and � is a
given function.
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There are literature works with different views on this type of equation. In many
works, it is usually assumed that P(u)¼�um with � and m as constants and then
Equation (1.4) assumes the form

ut �
�m

mþ 1
divð�ðxÞru1þmÞ ¼ f ðuÞ:

For a systematic investigation in the case of �¼ 1, we refer the readers to [23]. In
addition, for the problem with f¼ 0, there are several studies in the situation when
m!þ1, in relation to the Hele–Shaw problem. See [3–5,10,12] and related works.
Recently, many works have been carried out for the problem with variants of
nonlinearity f. Let us introduce some relevant studies in [7,15,19], among others. For
more generalized equations, when m is a variable exponent, see [2,20]. Using an
approach similar to that in [1], we study, in this article problem (1.1)–(1.3) when the
derivative ’0 is a generalization of homogeneous function, � may have zeros at some
points in � and the nonlinearity of f has the form of a power without upper bound.
Precisely, we assume that

(H1) The function ’2C1(R) and satisfies mjujp�24 ’0(u)4Mjujp�2, where
m,M40 and p42.

(H2) �2L1
locð�Þ such that lim infx!z jx� zj���(x)40 for some �2 (0, 2) and for

every z2�.
(H3) f :R�R!R is a continuous function and j f(t, u)j4Cf (juj

q�1
þ 1) for

Cf40, q5 p and for all t2R.
(H4) There exists Mf40 such that f(u)u5Mf (juj

q
� 1).

For the external force g, we impose a restriction that
(H5) The function g2L2

locðR;L2ð�ÞÞ and satisfies

k gk2L2
b

:¼ sup
t2R

Z tþ1

t

k gð�, sÞk2L2ð�Þds5þ1:

The class of functions satisfying (H1) includes the functions such that their
derivatives are homogeneous of order p� 2, ’0(u)¼ jujp�2 and some generalized
forms, such as ’0(u)¼ jujp�2�(u) where �(u) is bounded, m4�(u)4M for all u2R.

Hypothesis (H2) is motivated by the work [6] in which a semi-linear elliptic
problem was studied. It ensures that � has at most finite zeros in �. In various
processes, �(x)� jxj�. It is worth noting that the degeneracy made by � prevents us
from using the regularization method as in [2] to get the existence result. Moreover,
since q has no upper bounds, we may have a set of solutions to (1.1)–(1.3)
corresponding to each initial datum from the phase space. That makes our problem,
in general, generating a multi-valued process (MVP). The aim of our work is to prove
the existence result for (1.1)–(1.3) and study the asymptotic behaviour of solutions
over a large amount of time. To this end, we employ the notion of uniform attractors
for MVPs, with respect to the symbol ( f, g). For the analysis details, see [13,17,18]
and a similar approach in [8]. This framework can be seen as an extension for the
theory of global attractors which was developed in [9,11,21].

In order to study the problem (1.1)–(1.3), we introduce some weighted Sobolev
spaces. By D1,2

0 ð�, �Þ we denote the closure of C10 ð�Þ with respect to the norm

kvk
D

1,2
0
ð�, �Þ ¼

�Z
�

�ðxÞjrvj2
�1

2
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and let V be the space of all functions w2Lp(�) satisfying

w
��
@�
¼ 0 and

@

@xi

�
�
@w

@xi

�
2Lpð�Þ; i ¼ 1, . . . , ,N, ð1:5Þ

equipped with the norm

kwkV ¼

�Z
�

��divð�rwÞ��p�1
p

: ð1:6Þ

Putting

aðu, �Þ ¼

Z
�

�ðxÞr’ðuÞr�, for �2V, ð1:7Þ

one can write

aðu, �Þ ¼ �

Z
�

’ðuÞdivð�r�Þ, ð1:8Þ

aðu, uÞ ¼

Z
�

�ðxÞ’ 0ðuÞjruj2: ð1:9Þ

One observes from (H1) that j’(u)j4 jujp�1þ j’(0)j, and a(u, �) is well-defined if
u2Lp(�) and �2V.

Denoting

�ðuÞ ¼

Z u

0

ffiffiffiffiffiffiffiffiffiffi
’ 0ðsÞ

p
ds ð1:10Þ

for u2R, it is obvious that � is an increasing function. Furthermore, it follows
from (H1) that ffiffiffiffi

m
p
juj

p
2 4 j�ðuÞj4

ffiffiffiffiffi
M
p
juj

p
2: ð1:11Þ

From (1.9) and (1.10), we have

aðu, uÞ ¼

Z
�

�ðxÞjr�ðuÞj2: ð1:12Þ

Definition 1.1 We say that a function u(x, t) is a weak solution of (1.1)–(1.3) in
Q�,T¼�� [�,T ] if and only if

u2LqðQ�,TÞ \ Cð½�,T �;L
2ð�ÞÞ,

�ðuÞ 2D1,2
0 ð�, �Þ,

@u

@t
2Lp 0 ð�,T;V 0Þ þ Lq 0 ðQ�,TÞ,

ujt¼� ¼ u� a.e. in �,

and Z T

�

aðu, �Þdt ¼

Z
Q�,T

�
gðx, tÞ � f ðt, uÞ �

@u

@t

�
� dxdt ð1:13Þ

for every test functions �2Lp(�,T;V )\Lq(Q�,T).
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Equation (1.1) can be seen as an equation in Lp0(�,T;V 0)þLq0(Q�,T). Here V 0 is

the dual space of V; p0 and q0 are the conjugate exponents of p and q, respectively. In

this definition, we assume that �ðuÞ 2D1,2
0 ð�, �Þ since we need the definiteness of

a(u, u), which is important for our arguments in Section 2.
We first show some compactness results for our purposes in Section 2. In the last

section, we state and prove the main results.

2. Preliminaries

We recall the results of Caldiroli and Musina [6] related to the space D1,2
0 ð�, �Þ.

PROPOSITION 2.1 Assume that � is a bounded domain in R
N, N5 2, and � satisfies

(H2). Then the following embeddings hold:

(i) D1,2
0 ð�, �Þ ,!L2�� ð�Þ continuously,

(ii) D1,2
0 ð�, �Þ ,!Lrð�Þ compactly if r2 ½1, 2��Þ,

where 2�� ¼
2N

N�2þ�.

By Proposition 2.1, k�kV in (1.6) is the well-defined norm. Indeed, it suffices to

check that if kwkV¼ 0 then w¼ 0. For w2V, we have

�

Z
�

wdivð�rwÞ ¼

Z
�

�jrwj2 ¼ kwk2
D

1,2
0
ð�, �Þ

5 eC1kwk
2
L2ð�Þ:

In addition

�

Z
�

w divð�rwÞ4 kwkL2ð�Þkdivð�rwÞkL2ð�Þ

4 eC2kwkL2ð�Þk divð�rwÞkLpð�Þ

for some eC1, eC2 4 0. Thus

kwkV 5
eC1eC2

kwkL2ð�Þ:

The following is the important tools for our arguments.

PROPOSITION 2.2 Let {vn} be a sequence such that a(vn, vn)4C, for some C40, and

for all n2N. Then {vn} is precompact in Lp(�).

Proof From (1.12), we have

aðvn, vnÞ ¼

Z
�

�ðxÞjr�ðvnÞj
2:

Then we observe that the sequence {�(vn)} is bounded in D1,2
0 ð�, �Þ. By Proposition

2.1, {�(vn)} is precompact in L	(�) for all 	 satisfying 15	5 2�� and then �(vn)!

strongly in L	(�), by replacing with a subsequence if necessary. This ensures that

�(vn)!
 a.e. in �. In addition, by the boundedness of {�(vn)} in L	(�) and (1.11),

we see that {vn} is bounded in L
p	
2 ð�Þ. It follows that vn* v in L

p	
2 ð�Þ. By the

monotonicity of �, we deduce that vn! ��1(
)¼ v a.e. in �.
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For any �40, by Egorov’s theorem, there exists a subset E�� with measure

jEj5�, such that vn! v uniformly in �\E. Taking r5 p	
2 , we haveZ

�

jvn � vjr ¼

Z
�nE

jvn � vjr þ

Z
E

jvn � vjr

4
Z

�nE

jvn � vjr þ

�Z
E

jvn � vj
p	
2

��
�1��, with � ¼

2r

p	
:

The last inequality shows that vn! v strongly in Lr(�). Choosing 	 such that

25	5 2�� and then taking r¼ p, we get the conclusion. g

The next two propositions can be proved by using the arguments as in [16,

Section 12, Chapter 1] with some slight modifications. In what follows, we denote by

V �¼V 0 þLq 0(�).

PROPOSITION 2.3 For any �40, there exists C�40 such that

ku� vk
p
Lpð�Þ4 �½aðu, uÞ þ aðv, vÞ� þ C�ku� vk

p
V �

for all u, v2S ¼ fw
�� �ðwÞ 2D1,2

0 ð�, �Þg.

Proof Assume on contrary that there exist �040 and two sequences un, vn2S

such that

kun � vnk
p
Lpð�Þ4 �0½aðun, unÞ þ aðvn, vnÞ� þ nkun � vnk

p
V � :

Putting

eun ¼ un

½aðun, unÞ þ aðvn, vnÞ�
1
p

, evn ¼ vn

½aðun, unÞ þ aðvn, vnÞ�
1
p

,

we have

keun �evnkpLpð�Þ4 �0 þ nkeun �evnkpV � : ð2:1Þ

Noting that

aðtu, tuÞ ¼ jtj2
Z

�

�ðxÞ’ 0ðtuÞjruj2 4Mjtjp
Z

�

�ðxÞjujp�2jruj2

4
M

m
jtjpaðu, uÞ

for all t2R, we get

aðeun,eunÞ4 M

m
, aðevn,evnÞ4 M

m
:

Therefore, by Proposition 2.2, there exist two subsequences eunm and evnm such that

eunm !eu, evnm !ev strongly in Lpð�Þ:

Since p42 and V�Lp(�), it follows that Lp(�)�Lp 0(�)�V 0. Moreover,

since q5 p, one has Lp(�)�Lp 0(�)�Lq 0(�). This implies that Lp(�)�V �.

By (2.1) we have keu�evkV � ¼ 0, and therefore eu ¼ev. Then keu�evk
Lp ð�Þ
¼ 0, which

contradicts (2.1). g

Optimization 713
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PROPOSITION 2.4 Assume that
R T
� aðunðtÞ, unðtÞÞdt4C and

�
dun
dt

	
is bounded in

Lp 0(�,T;V 0)þLq 0(Q�,T). Then {un} is precompact in Lp(Q�,T).

Proof From Proposition 2.3, we have

Z T

�

kunþ‘ � unk
p
Lpð�Þ4 �

Z T

�

½aðunþ‘, unþ‘Þ þ aðun, unÞ� þ C�

Z T

�

kunþ‘ � unk
p
V � :

Hence it suffices to show that the sequence {un} contains a subsequence, which is a

Cauchy sequence in Lp(�,T;V �).
We will prove a stronger claim: There exists a subsequence u� such that

u� ! u in Cð½�,T �;V �Þ: ð2:2Þ

By the hypotheses, there exists a set Z� [�,T ] with measure jZj ¼ 0 such that, for

t2 [�,T ]\Z,

aðunðtÞ, unðtÞÞ4Kt 51:

Hence for any t =2Z, there exists a subsequence (dependent of t) such that

ukðtÞ ! uðtÞ strongly in V �: ð2:3Þ

Now let {t1, t2, . . .} be a sequence which is dense in [�,T ], and ti =2Z. Using (2.3) and

a diagonal procedure, we can extract a subsequence u� such that

u�ðtiÞ ! uðtiÞ strongly in V � for all i: ð2:4Þ

Noting that Lp 0(�,T;V 0)þLq 0(Q�,T)�Lq 0(�,T;V �), for all t2 [�,T ], we have

ku�ðtiÞ � u�ðtÞkV � ¼






Z ti

t

u 0�ðsÞds






V �

4
�Z ti

t

ku 0�ðsÞk
q 0

V � ds

� 1
q 0

jti � tj
1
q 4Cjti � tj

1
q:

Then

ku�þrðtÞ � u�ðtÞkV � 4 ku�þrðtÞ � u�þrðtiÞkV �

þ ku�þrðtiÞ � u�ðtiÞkV � þ ku�ðtiÞ � u�ðtÞkV � ,

4 ku�þrðtiÞ � u�ðtiÞkV � þ 2Cjti � tj
1
q

for all t2 [�,T ]. By the density of {ti} in [�,T ], it follows that {u�} is a Cauchy

sequence in V � uniformly in t2 [�,T ]. The proof is complete. g

We use the next proposition, which makes the initial condition in problem

(1.1)–(1.3) meaningful.

PROPOSITION 2.5 If u2Lp(�,T;V )\Lq(Q�,T) and
du

dt
2Lp 0 ð�,T;V 0Þ þ Lq 0 ðQ�,TÞ then

u2C([�,T ];L2(�)).

For the proof, we refer the readers to [14].
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3. Main results

3.1. Existence of a global solution

THEOREM 3.1 Under the assumptions (H1)–(H5), the problem (1.1)–(1.3) has at least

one weak solution for each u� 2L
2(�).

Proof Consider the approximating solution un(t) in the form

unðtÞ ¼
Xn
k¼1

unkðtÞek,

where fejg
1
j¼1 is a basis of D1,2

0 ð�, �Þ \ Lpð�Þ, which is orthogonal in L2(�). We get un
from solving the problem�

dun
dt

, ek

�
¼ �hAun, eki � h f ðunÞ, eki þ hg, eki,

ðunð�Þ, ekÞ ¼ ðu� , ekÞ,

where Au¼div(�(x)’0(u)ru).
Since f, ’0 2C(R), the Peano theorem ensures the local existence of un. We now

establish some a priori estimates for un. We have

1

2

d

dt
kunk

2
L2ð�Þ þ aðun, unÞ þ

Z
�

f ðunÞun ¼

Z
�

gun:

Using hypothesis (H4) and the Cauchy inequality, we get

1

2

d

dt
kunk

2
L2ð�Þ þ aðun, unÞ þMf

Z
�

junj
q

4Mf j�j þ
1

2
k gk2L2ð�Þ þ

1

2
kunk

2
L2ð�Þ: ð3:1Þ

It follows that

d

dt
kunk

2
L2ð�Þ4 kunk

2
L2ð�Þ þ k gk

2
L2ð�Þ þ 2Mf j�j:

Then

d

dt
ðe�tkunk

2
L2ð�ÞÞ4 e�tðk gk2L2ð�Þ þ 2Mf j�jÞ:

Integrating the last inequality from � to t, we get

kunðtÞk
2
L2ð�Þ4 et��kunð�Þk

2
L2ð�Þ þ

Z t

�

et�sk gð�, sÞk2L2ð�Þ dsþ 2Mf ðe
t�� � 1Þ

4 et��kunð�Þk
2
L2ð�Þ þ 2Mf j�jðe

t�� � 1Þ

þ

Z �þ1

�

et�sk gð�, sÞk2L2ð�Þdsþ

Z �þ2

�þ1

et�sk gð�, sÞk2L2ð�Þdsþ � � �

4 et��kunð�Þk
2
L2ð�Þ þ 2Mf j�jðe

t�� � 1Þ þ et��ð1þ e�1 þ e�2 þ � � �Þk gk2L2
b

4 et��kunð�Þk
2
L2ð�Þ þ 2Mf j�jðe

t�� � 1Þ þ
et��

1� e�1
k gk2L2

b
:
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This allows us to state that {un} is bounded in L1(�,T; L2(�)), thanks to the fact that

kun(�)kL2(�)4 ku�kL2(�). Integrating (3.1) on [�,T ], we have

kunðtÞk
2
L2ð�Þ þ 2

Z T

�

aðun, unÞdtþ 2Mf kunk
q
LqðQ�,TÞ

4 kunð�ÞkL2ð�Þ þ

Z T

�

k gð�, sÞk2L2ð�Þdsþ kunk
2
L2ðQ�,TÞ

þ 2Mf j�jðT� �Þ:

The last inequality implies that

fung is bounded in LqðQ�,TÞ, ð3:2Þ

 Z T

�

aðunðtÞ, unðtÞÞdt

�
is bounded: ð3:3Þ

Taking (H3) into account, we get the estimateZ
Q�,T

j f ðunÞj
q 0 4

Z
Q�,T

Cð1þ junj
q�1Þ

q 0 4
Z
Q�,T

Cð1þ junj
qÞ:

Then {f(un)} is bounded in Lq 0(Q�,T) and

f ðunÞ* 
 in Lq 0 ðQ�,TÞ: ð3:4Þ

On the other hand, we rewrite the equation as

dun
dt
¼ aðun, �Þ � f ðt, unÞ þ gðx, tÞ

and implement the following estimates:����
Z T

�

aðun, vÞdt

���� ¼
����
Z T

�

dt

Z
�

’ðunÞ divð�ðxÞrvÞ

����
4
Z T

�

dt

Z
�

ðjunj
p�1 þ j’ð0ÞjÞj divð�rvÞj

4C

Z T

�

�
kunk

p

p 0

Lpð�Þ þ 1
�
kvkV dt

4C
�
kunk

p

p 0

LpðQ�,TÞ
þ 1

�
kvkLpð�,T;VÞ,

jhf ðunÞ, vij4 k f ðunÞkLq 0 ðQ�,TÞ
kvkLqðQ�,TÞ

,

jhg, vij4 k gkLq 0 ðQ�,TÞ
kvkLqðQ�,TÞ

for all v2Lp(�,T;V )\Lq(Q�,T). Then it follows that
�
dun
dt

	
is bounded in

Lp 0(�,T;V 0)þLq 0(Q�,T). Combining this with (3.3) and using Proposition 2.4 we

conclude that {un} is precompact in Lp(Q�,T). Hence we can assume that

. un! u strongly in Lp(Q�,T),

. un! u a.e. in Q�,T.
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Since f2C(R), it follows that f(un)! f(u) a.e. in Q�,T. Thanks to (3.4), one has

f ðunÞ* f ðuÞ weakly in Lq 0 ðQ�,TÞ: ð3:5Þ

Analogously, since {un} is bounded in Lp(Q�,T), one can see that {’(un)} is bounded

in Lp 0(Q�,T)�Lp 0(0, T;V 0). Therefore ’(un)*� weakly in Lp 0(0, T;V 0). Putting this

together with the fact that ’(un)!’(u) a.e in Q�,T, we have ’(un)* ’(u)¼� weakly

in Lp 0(0, T;V 0).
Finally, passing to the limit as n!1 in the relationZ T

�

hu 0n, vi þ

Z T

�

dt

Z
�

’ðunÞ divð�rvÞ þ

Z T

�

dt

Z
�

f ðunÞv ¼

Z T

�

dt

Z
�

gv

for v2Lp(�,T;V )\Lq(Q�,T), and using Proposition 2.5 we conclude that u is a weak

solution of (1.1)–(1.3). g

3.2. Existence of the uniform attractor

Let us recall some definitions and related results. The pair of functions ( f(s, �),

g(�, s))¼ (s) is called a symbol of (1.1). We consider (1.1) with a family of symbols

including the shifted forms (sþ h)¼ ( f(sþ h, �), g(�, sþ h)) and the limits of some

sequence {(sþ hn)}n2N in an appropriate topological space �. The family of such

symbols is said to be the hull of  in � and is denoted by H(), i.e.

HðÞ ¼ cl�fðsþ hÞ
�� h2Rg:

If the hull H() is a compact set in �, we say that  is translation compact in �.
Let E be a Banach space (which in our case will be L2(�)), Rd¼ {(t, �)2

R
2
j t5 �} and P(E )¼ {B�E j B 6¼ ;}. Assume that � is a subspace of �.

Definition 3.1 A family of mappings {U :Rd�E!P(E )}2� is called an MVP if

there exists a continuous group {T(h) :�!�}h2R such that for all  2�, x2E

we have

(1) U(�, �, x)¼ x, for all � 2R;
(2) U(t, �, x)�U(t, s,U(s, �, x)) for all t5 s5 �;
(3) U(tþ h, �þ h,x)�UT(h)(t, �, x) for all (t, �)2Rd, h2R.

Denote by

Cq ¼ f 2CðR; RÞ : j ðuÞj4C ð1þ juj
q�1Þ for C 4 0g,

k kCq ¼ sup
u2R

j ðuÞj

1þ jujq�1
:

Then Cq is a Banach space. We say that fn! f in the space C(R; Cq) if

lim
n!þ1

sup
s2½t,tþr�

k fnðs, �Þ � f ðs, �ÞkCq ¼ 0

for all t2R, r40.
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Let f0 2CðR; CqÞ, g0 2L
2,w
loc ðR;L2ð�ÞÞ and

Hð f0Þ ¼ clCðR;CqÞf f0ðsþ hÞ j h2Rg,

Hð g0Þ ¼ clL2,w
loc
ðR;L2ð�ÞÞfg0ðsþ hÞ j h2Rg,

where the topology in L2,w
loc ðR;L2ð�ÞÞ is equipped by local weak convergence, i.e.

gn! g in L2,w
loc ðR;L2ð�ÞÞ if

lim
n!þ1

Z tþr

t

Z
�

ð gnðx, sÞ � gðx, sÞÞ�ðx, sÞdxds ¼ 0

for all t2R, r40 and �2L2(Qt,tþr).
Let us take �¼H( f0)�H(g0). For each ¼ ( f, g)2�, we define

Uðt, �, vÞ ¼ fu ¼ uðtÞ j u is the solution of (1.1)�(1.3), uð�Þ ¼ vg:

Then {U}2� is an MVP with respect to the translation group T(h)¼ (� þ h) by the

arguments in [22]. In addition,U is a strictMVP, that isU(t, �, x)¼U(t, s,U(s, �, x))
for all t5 s5 �.

Denote by

U�ðt, �, vÞ ¼
[
2�

Uðt, �, vÞ

and BR¼B(0,R), the ball in E centred at 0 with radius R.

Definition 3.2 The set A��E is called a uniform attractor of MVP {U}2� if

A� 6¼E and

(1) A� is a uniformly attracting set, that is, for any R40, for all � 2R,

distðU�ðt, �,BRÞ,A�Þ ! 0 as t!þ1;

(2) A� is a minimal uniformly attracting set, that is, if �� is a uniformly

attracting set then A�� clE��.

Here the notation dist(A,B) :¼ supa2A infb2B ka� bkE, that is the Hausdorff

semi-distance between two sets in E.

We use the following theorem as a sufficient condition for the existence of a

uniform attractor described above. For a proof, see [18].

THEOREM 3.2 If the family of MVP {U}2� satisfies the following conditions

(1) there exists R040 such that, for all R40, dist(U�(t, 0,BR),BR0
)! 0 as

t!þ1,
(2) for all R40 and {tn j tn%þ1}, {�n j �n2U�(tn, 0,BR)} is precompact in E,

then {U}2� has a uniform attractor

A� ¼
\
s5 0

[
t5 s

U�ðt, 0,BR0þ1Þ,

which is compact in E.
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In order to deal with a uniform attractor, with respect to the family of symbols,

one usually requires the translation compact property. Let us recall some discussions

on this requirement. It is known that the hypothesis (H5) ensures that g is translation

compact in L2,w
loc ðR;L2ð�ÞÞ, (see [8] for details). In addition, the following statement

gives a sufficient condition for the translation compact property in C(R; Cq).

PROPOSITION 3.3 [8] The function f2C(R; Cq) is translation compact if, and only if,

for all R40 one has

(1) j f(t, v)j4C(R) for all t2R, v2 [�R,R],
(2) j f(t1, v1)� f(t2, v2)j4�(jt1� t2j þ jv1� v2j, R) for all t1, t22R; v1, v22 [�R,R].

Here C(R)40 and �(s,R)! 0 as s! 0þ.

It is easy to see that, if f2C1(R2; R) such that j f(t, v)j4C(R),
�� @f
@v ðt, vÞ

��4CðRÞ

and
�� @f
@t ðt, vÞ

��4CðRÞ for all t2R and for all v2 [�R,R] then the hypotheses in

Proposition 3.3 are satisfied. For instance, the function f(t, u)¼ jujq�2u arctan t is

well-checked.
From now on, we suppose that f is translation compact. Together with the fact

that g is translation compact in L2,w
loc ðR;L2ð�ÞÞ, one has that � is a compact set in

CðR; CqÞ � L2,w
loc ðR;L2ð�ÞÞ. Then it follows from [8] that T(h) : �!� is continuous

and T(h)��� for all h2R.
We need the following lemma to prove the dissipative property of MVP.

LEMMA 3.4 If u(t) is a weak solution of (1.1)–(1.3) then

kuðtÞk2L2ð�Þ4 e�ðt��Þku�k
2
L2ð�Þ þM0ð1� e�ðt��ÞÞ þ

k gk2
L2
b

1� e�1
,

where M0¼M0(q, j�j, Mf)40.

Proof From (1.1), using (H4) and Cauchy inequality, we have

d

dt
kuðtÞk2L2ð�Þ þ 2aðu, uÞ þ 2Mf kuk

q
Lqð�Þ

4 2Mf j�j þ kuðtÞk
2
L2ð�Þ þ k gðtÞk

2
L2ð�Þ: ð3:6Þ

Since q42, using Young’s inequality, one has

2kuðtÞk2L2ð�Þ4CkuðtÞk2Lqð�Þ4 2Mf kuðtÞk
q
Lqð�Þ þMq,

where Mq40. Putting this into (3.6), we obtain

d

dt
kuðtÞk2L2ð�Þ þ kuðtÞk

2
L2ð�Þ4 2Mf j�j þMq þ k gðtÞk

2
L2ð�Þ:

Then

d

dt
ðetkuðtÞk2L2ð�ÞÞ4 etð2Mf j�j þMqÞ þ etk gðtÞk2L2ð�Þ:

Optimization 719

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l S
un

 Y
at

-S
en

 U
ni

ve
rs

ity
] 

at
 0

6:
35

 1
5 

D
ec

em
be

r 
20

12
 



Taking integration over [�, t], we arrive at

kuðtÞk2L2ð�Þ4 e�ðt��Þkunk
2
L2ð�Þ þ ð1� e�ðt��ÞÞð2Mf j�j þMqÞ

þ

Z t

�

e�ðt�sÞk gðsÞk2L2ð�Þds

4 e�ðt��Þkunk
2
L2ð�Þ þ ð1� e�ðt��ÞÞð2Mf j�j þMqÞ

þ

Z t

t�1

e�ðt�sÞk gðsÞk2L2ð�Þdsþ

Z t�1

t�2

e�ðt�sÞk gðsÞk2L2ð�Þdsþ � � �

4 e�ðt��Þkunk
2
L2ð�Þ þ ð1� e�ðt��ÞÞð2Mf j�j þMqÞ

þ ð1þ e�1 þ e�2 þ � � �Þ sup
t2R
k gðsÞk2L2ð�Þ

4 e�ðt��Þkunk
2
L2ð�Þ þ ð1� e�ðt��ÞÞð2Mf j�j þMqÞ þ

k gk2
L2
b

1� e�1
:

So we complete the proof. g

LEMMA 3.5 Let the hypotheses (H1)–(H5) hold. Assume that {un}n2N is a sequence of

weak solutions of (1.1)–(1.3) with respect to the sequence of symbols {n}n2�,n2N

such that

(1) un(�)* u� in L2(�),
(2) n!  in �,

then there exists a solution u of (1.1)–(1.3) with respect to the symbol  such that

u(�)¼ u� and un(t
�)! u(t �) in L2(�) for any t �4�.

Proof We will adapt the technique as in [13,22] to prove this statement. Let

n¼ ( fn, gn). Since f satisfies (H3)–(H4) for all t2R and fn2H( f ), one sees that fn,

n2N also satisfies (H3)–(H4) with the same constants Cf and Mf. From (1.1),

we have

d

dt
kunðtÞk

2
L2ð�Þ þ aðun, unÞ þ 2Mf kunk

q
Lqð�Þ

4 2Mf j�j þ k gnðtÞk
2
L2ð�Þ þ kunðtÞk

2
L2ð�Þ

for all t4�. Using the same arguments as in the proof of Lemma 3.4, we have

kunðtÞk
2
L2ð�Þ4 e�ðt��Þkunð�Þk

2
L2ð�Þ þM0ð1� e�ðt��ÞÞ þ

1

1� e�1
k gnk

2
L2
b
:

Since {un(�)} is bounded and k gnk
2
L2
b

4 k gk2
L2
b

, we have {un} is bounded in

L1(0,T;L2(�)) for given T4�. In particular,

unðtÞ* uðtÞ in L2ð�Þ for each t2 ½�,T � ð3:7Þ

up to a subsequence. Now using the arguments as in the proof of Theorem 3.1,

we have

.
R T
� aðun, unÞdt is bounded,

. {un} is bounded in Lq(Q�,T),
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. { fn (un)} is bounded in Lq 0(Q�,T),

. fu 0ng is bounded in Lp 0(�,T;V 0)þLq 0(Q�,T).

Using Proposition 2.4, one gets that {un} is precompact in Lp(Q�,T) and then, by

replacing {un} with a subsequence if necessary, we have

. un! u a.e in Q�,T,

. ’(un)*’(u) in Lp 0(�,T;V 0),

. u 0n * u 0 in Lp 0(�,T;V 0)þLq 0(Q�,T).

Let n!  ¼ ð �f, �gÞ in �. In order to prove that u is a weak solution of (1.1)–(1.3)
with respect to the symbol , we need to pass to the limit in following relation:Z T

�

hu 0n, vi þ

Z T

�

dt

Z
�

’ðunÞ divð�rvÞ þ

Z T

�

dt

Z
�

fnðunÞv ¼

Z T

�

dt

Z
�

gnv

for v2Lp(�,T;V )\Lq(Q�,T). Since gn * �g in L2(�,T;L2(�)), it remains to prove that
fnðunÞ* �fðuÞ in Lq 0(Q�,T). We have the stronger claim, that is fnðunÞ ! �fðuÞ strongly
in Lq 0(Q�,T). Indeed,Z T

�

Z
�

j fnðt, unÞ � �fðt, uÞjq
0

dxdt4 2q
0

Z T

�

Z
�

j �f ðt, unÞ � �f ðt, uÞjq
0

dx dt

þ 2q
0

Z T

�

Z
�

j fnðt, unÞ � �fðt, unÞj
q 0

ð1þ junj
q�1Þ

q 0
ð1þ junj

q�1Þ
q 0dxdt

4 2q
0

Z T

�

Z
�

j �f ðt, unÞ � �f ðt, uÞjq
0

dxdt

þ

�
4 sup
½�,T �
j fn � �f jCq

�q 0 Z T

�

Z
�

ð1þ junj
qÞdxdt:

Then the boundedness of {un} in Lq(Q�,T) and the continuity of �f guarantee our
claim. In addition, by Proposition 2.5, we get u2C([�,T ]; L2(�)). Then the initial
condition makes sense.

We are in a position to show that un(t
�)! u(t �) in L2(�) for any t �4�. Taking

into account of (3.7), we have to check that kun(t
�)kL2(�)!ku(t

�)kL2(�) in R.
Let us denote

JnðtÞ ¼ kunðtÞk
2
L2ð�Þ � 2

Z t

�

ð gnðsÞ, unðsÞÞL2ð�Þdt�Mj�jðt� �Þ,

JðtÞ ¼ kuðtÞk2L2ð�Þ � 2

Z t

�

ð gðsÞ, uðsÞÞL2ð�Þdt�Mj�jðt� �Þ

for some M40. Then Jn, J2C([�,T ]; R). Arguing as in the proof of Lemma 3.4, un
satisfies the estimate

d

dt
kunðtÞk

2
L2ð�Þ4Mj�j þ 2ð gnðtÞ, unðtÞÞL2ð�Þ,

and the same estimate is valid for u. Hence, Jn and J are decreasing on [�,T ]. We first
show that

JnðtÞ ! JðtÞ for a.e. t2 ½�,T �: ð3:8Þ
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Obviously��JnðtÞ � JðtÞ
��

4
��kunðtÞk2L2ð�Þ � kuðtÞk

2
L2ð�Þbigj þ 2

����
Z t

�

ð gn, unÞL2ð�Þ � ð g, uÞL2ð�Þ dt

����
4 kunðtÞ � uðtÞkL2ð�ÞðkunðtÞkL2ð�Þ þ kuðtÞkL2ð�ÞÞ

þ 2

����
Z t

�

ð gn, un � uÞL2ð�Þdt

����þ 2

����
Z t

�

ð gn � g, uÞL2ð�Þ dt

����:
Moreover, one has��� Z t

�

ð gn, un � uÞL2ð�Þdt
���4 k gnkL2ðQ�,tÞ

kun � ukL2ðQ�,tÞ
! 0

as n!1 since un! u strongly in L2(Q�,t) and {gn} is bounded in L2(Q�,t). In

addition Z t

�

ð gn � g, uÞL2ð�Þdt! 0

as n!1 since gn* g in L2(Q�,t). Then (3.8) is proved due to the fact that

un(t)! u(t) in L2(�) for a.e. t2 (�,T ).
Suppose that {tm} is an increasing sequence in [�,T ] such that tm! t � as m!1.

Then

. Jn(tm)! Jn(t
�) as m!1,

. Jn(tm)! J(tm) as n!1.

So for �40, we have eventually

Jnðt
�Þ � Jðt�Þ4 JnðtmÞ � Jðt�Þ ¼ JnðtmÞ � JðtmÞ þ JðtmÞ � Jðt�Þ5 ":

Similarly, J(t �)� Jn(t
�)5". Therefore Jn(t

�)! J(t �) and then

kunðt
�ÞkL2ð�Þ ! kuðt

�ÞkL2ð�Þ as n!1: g

The following theorem is the main result in this section.

THEOREM 3.6 Under the hypotheses (H1)–(H5), the MVP {U}2� generated by the

problem (1.1)–(1.3) possesses a uniform attractor which is a compact set in L2(�).

Proof Note that each symbol n¼ ( fn, gn)2� satisfies the same conditions as in

(H3)–(H5). Furthermore, since gn2H(g), we have k gnkL2
b
4 k gkL2

b
. Hence it follows

from Lemma 3.4 that, if un is the weak solution of (1.1)–(1.3) with respect to the

symbol n, one has

kunðtÞk
2
L2ð�Þ4 e�ðt��Þkunð�Þk

2
L2ð�Þ þM0ð1� e�ðt��ÞÞ þ

k gk2
L2
b

1� e�1
:

The last inequality ensures that, if un(�)2BR then there exists T0¼T0(�,R) such that

unðtÞ 2BR0
, for all t5T0,
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where

R0 ¼ 2M0 þ
k gk2

L2
b

1� e�1
:

That is U�(t, �, BR)�BR0
for all t5T0(�,R). This fulfils the first condition in

Theorem 3.2. We now verify the second condition.
Let tn%þ1 and �n2U�(tn, 0,BR). Then there exists a sequence of solutions {un}

of (1.1)–(1.3) with respect to the sequence of symbols {n} such that �n¼ un(tn). For
given t �40, we have

Unðtn, 0,BRÞ ¼ Unðt
� þ tn � t�, 0,BRÞ

� Unðt
� þ tn � t�, tn � t�,Un ðtn � t�, 0,BRÞÞ

� Unðt
� þ tn � t�, tn � t�,BR0

Þ

for tn5T0þ t �.
Hence

Unðtn, 0,BRÞ � UTðtn�t�Þnðt
�, 0,BR0

Þ:

Now �n 2Un ðt
�, 0,BR0

Þ where n ¼ Tðtn � t�Þn 2�. That is, �n¼ vn(t
�) where vn

is the weak solution of (1.1)–(1.3) with respect to the symbol n. Suppose that
n!  in �. By Lemma 3.5, there exists a solution v of (1.1)–(1.3) with respect to the
symbol , such that �n¼ vn(t

�)! v(t �) in L2(�) and thus the proof completes. g
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