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Abstract. Let q > 1 and E be a real q-uniformly smooth Banach space, K be a nonempty closed

convex subset of E and T : K → K be a Lipschitz continuous mapping. Let {un} and {vn} be bounded

sequences in K and {αn} and {βn} be real sequences in [0, 1] satisfying some restrictions. Let {xn} be

the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iteration process with errors: yn =

(1− βn)xn + βnTxn + vn, xn+1 = (1− αn)xn + αnTyn + un, n ≥ 1. Sufficient and necessary conditions for

the strong convergence {xn} to a fixed point of T is established.
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1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and let Jq(q > 1) denotes the generalized duality mapping
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from E into 2E?
given by

Jq(x) = {f ∈ E? : 〈x, f〉 = ‖x‖q = ‖x‖‖f‖},

where E? denote the dual space of E and 〈·, ·〉 denotes the generalized duality pairing between E and E?.

In particular, J2 is called the normalized duality mapping and it is usually denote by J . It is well known

(see [11]) that Jq(x) = ‖x‖q−2J(x) if x 6= 0, and that if E? is strictly convex then Jq is single-valued. The

single-valued generalized duality mapping will be denoted by jq in the sequel.

Recall that a mapping T with domain D(T ) and range R(T ) in E is called strictly pseudocontractive

[1] if for all x, y ∈ D(T ), there exist λ > 0 and j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖x− y − (Tx− Ty)‖2. (1.1)

The mapping T is said to be Lipschitz continuous with constant L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ D(T ).

We remark that a strictly pseudocontractive mapping is Lipschitz continuous with constant L = (1+λ)/λ >

1 (see, e.g., [14]).

The Mann iterative process (with errors) and the Ishikawa iterative process (with errors) have been

extensively applied to approximating the solutions of nonlinear operator equations or fixed points of non-

linear mappings in Hilbert spaces or Banach spaces in the literature. See, e.g., [3-10]. In 1974, Rhoades

[9] proved the following convergence theorem using the Mann iterative process.

Theorem 1.1. Let H be a real Hilbert space and K a nonempty compact convex subset of H. Let

T : K → K be a strictly pseudocontractive mapping and let {αn} be a real sequence satisfying the

conditions: (i) α0 = 1; (ii) 0 < αn < 1, n ≥ 1; (iii )
∑∞

n=1 αn = ∞; (iv) limn→∞ αn = α < 1. Then the

sequence {xn} generated from an arbitrary x0 ∈ K by the Mann iterative process,

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,
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converges strongly to a fixed point of T .

Let E be a real Banach space. The modulus of smoothness of E is defined as the function ρE : [0,∞) →

[0,∞) :

ρE(τ) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ}.

E is said to be uniformly smooth if and only if limτ→0+(ρE(τ)/τ) = 0. Let q > 1. The space E is said

to be q−uniformly smooth (or to have a modulus of smoothness of power type q > 1), if there exists a

constant cq > 0 such that ρE(τ) ≤ cqτ
q. It is well known that Hilbert spaces are 2-uniformly smooth while

if 1 < p ≤ 2, Lp, lp, and the Sobolev spaces W p
m are p−uniformly smooth. If p ≥ 2, Lp, lp and W p

m are

2-uniformly smooth.

Theorem 1.2 [11]. Let q > 1 and E be a real Banach space. Then the following are equivalent:

(1) E is q−uniformly smooth.

(2) There exists a constant cq > 0 such that for all x, y ∈ E

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉+ cq‖y‖q. (1.1)

(3) There exists a constant dq such that for all x, y ∈ E and t ∈ [0, 1]

‖(1− t)x + ty‖q ≥ (1− t)‖x‖q + t‖y‖q − ωq(t)dq‖x− y‖q, (1.2)

where ωq(t) = tq(1− t) + t(1− t)q.

Furthermore, it was shown in [12, Remark 5] that if E is q−uniformly smooth (q > 1), then for all

x, y ∈ E, there exists a constant L? > 0 such that

‖jq(x)− jq(y)‖ ≤ L?‖x− y‖q−1.

Recently, Osilike and Udomene [13] improved, unified and developed the above Theorem 1.1 and Brow-

der and Petryshyn’s corresponding result [1] in two aspects: (i) Hilbert spaces are extended to the setting of
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q−uniformly smooth Banach spaces (q > 1); (ii) Mann iterative process is extended to the case of Ishikawa

iterative process.

Theorem 1.3 [13, Theorem 2]. Let E be a real q−uniformly smooth Banach space which is also

uniformly convex. Let K be a nonempty closed convex subset of E and T : K → K be a strictly

pseudocontractive mapping with a nonempty fixed-point set F (T ). Let {αn} and {βn} be real sequences

in [0, 1] satisfying the conditions:

(i) 0 < a ≤ αq−1
n ≤ b < (qλq−1/cq)(1− βn),∀n ≥ 1 and for some constants a, b ∈ (0, 1);

(ii)
∑∞

n=1 βτ
n < ∞, where τ = min{1, (q − 1)}.

If {xn} is the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iterative process

{
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn, n ≥ 1.

then {xn} converges weakly to a fixed point of T .

Let E be a real q−uniformly smooth Banach space, K be a nonempty closed convex (not necessarily

bounded) subset of E, and T : K → K be a Lipschitz continuous mapping with constant L > 0 such

that F (T ) 6= ∅. Let {un} and {vn} be bounded sequences in E and {αn}, {βn} be real sequences in [0, 1]

satisfying certain restrictions. Let {xn} be the sequence generated from x1 ∈ K by the Ishikawa iterative

process with errors: {
yn = (1− βn)xn + βnTxn + vn,
xn+1 = (1− αn)xn + αnTyn + un, n ≥ 1.

(1.3)

Here we assume that after perturbations by errors all xn and yn still belongs to K. We note that the

Ishikawa iterative process with errors (1.3) was introduced by Liu [3] for approximating solutions of a

nonlinear equation in Banach spaces. In this paper we will establish the sufficient and necessary conditions

for the strong convergence of {xn} to a fixed point of T . The case where vn equal to the zero vectors was

studied in [14] under the assumption that T is a strictly pseudocontractive mapping.
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The following lemma will be useful in the sequel.

Lemma 1.1 [10]. Let{an}∞n=1 and {bn}∞n=1 be sequences of nonnegative real numbers such that
∑∞

n=1 bn <

∞ and an+1 ≤ an + bn,∀n ≥ 1. Then limn→∞ an exists.

2. Main Results

Lemma 2.1. Let E be a real q−uniformly smooth Banach space and K be a nonempty convex subset

of E, and T : K → K be a Lipschitz continuous mapping with constant L > 0 such that F (T ) 6= ∅. Let

{un}∞n=1, {vn}∞n=1 be bounded sequences in E, and {αn}∞n=1, {βn}∞n=1 be real sequences in [0, 1] satisfying

the following conditions: (i)
∑∞

n=1 ‖un‖ < ∞, (ii)
∑∞

n=1 ‖vn‖ < ∞, and (iii)
∑∞

n=1 αn < ∞. Let {xn} be

the sequence generated from an arbitrary x1 ∈ K by the Ishikawa iterative process (1.3) with errors. Then

(i) ‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn,∀n ≥ 1,∀x? ∈ F (T ),

where

δn = qαn(1 + L + L2) + αq
ncq(1 + qL(1 + L) + cqL

q(2 + L)q−1(1 + L))

and

θn = (qαnL + 1)‖xn − x?‖q−1‖vn‖+ αq
nc2

qL
q(2 + L)q−1‖vn‖q

+q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.

(ii) There exists a constant M > 0 (e.g., M = e
∑∞

n=1
δn) such that

‖xn+m − x?‖q ≤ M‖xn − x?‖q + M
n+m−1∑

k=n

θk,∀n, m ≥ 1,∀x? ∈ F (T ).

Proof. (i) Let x? be an arbitrary element in F (T ). Then it follows from (1.1) and (1.3) that

‖xn+1 − x?‖q = ‖(1− αn)xn + αnTyn + un − x?‖q

≤ ‖(1− αn)xn + αnTyn − x?‖q + q〈un, jq(xn+1 − un − x?)〉+ cq‖un‖q

≤ ‖(1− αn)xn + αnTyn − x?‖q + q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.(2.1)

Observe that
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‖(1− αn)xn + αnTyn − x?‖q = ‖xn − x? − αn(xn − Tyn)‖q

≤ ‖xn − x?‖q − qαn〈xn − Tyn, jq(xn − x?)〉
+αq

ncq‖xn − Tyn‖q

≤ ‖xn − x?‖q + qαn|〈xn − Tyn, jq(xn − x?)〉|
+αq

ncq‖xn − Tyn‖q. (2.2)

Since

|〈xn − Tyn, jq(xn − x?)〉| ≤ ‖xn − Tyn‖‖jq(xn − x?)‖
= ‖(xn − x?)− (Tyn − Tx?)‖‖xn − x?‖q−1

≤ (‖xn − x?‖+ L‖yn − x?‖)‖xn − x?‖q−1

= ‖xn − x?‖q + L‖yn − x?‖‖xn − x?‖q−1,

and

‖yn − x?‖ ≤ ‖(1− βn)xn + βnTxn + vn − x?‖
= ‖(1− βn)(xn − x?) + βn(Txn − Tx?) + vn‖
≤ (1− βn)‖xn − x?‖+ βn‖Txn − Tx?‖+ ‖vn‖
≤ (1− βn + Lβn)‖xn − x?‖+ ‖vn‖
≤ (1 + L)‖xn − x?‖+ ‖vn‖,

we have

|〈xn − Tyn, jq(xn − x?)〉| ≤ ‖xn − x?‖q + L‖xn − x?‖q−1((1 + L)‖xn − x?‖+ ‖vn‖)
= (1 + L(1 + L))‖xn − x?‖q + L‖xn − x?‖q−1‖vn‖. (2.3)

Also since

‖xn − Tyn‖q = ‖(xn − x?)− (Tyn − Tx?)‖q

≤ ‖xn − x?‖q − q〈Tyn − Tx?, jq(xn − x?)〉+ cq‖Tyn − Tx?‖q

≤ ‖xn − x?‖q + q‖Tyn − Tx?‖‖jq(xn − x?)‖+ cqL
q‖yn − x?‖q

≤ ‖xn − x?‖q + qL‖yn − x?‖‖xn − x?‖q−1 + cqL
q‖yn − x?‖q,

and

‖yn − x?‖q ≤ ((1 + L)‖xn − x?‖+ ‖vn‖)q

= (2 + L)q(1+L
2+L‖xn − x?‖+ 1

2+L‖vn‖)q

≤ (2 + L)q(1+L
2+L‖xn − x?‖q + 1

2+L‖vn‖q) (by Jensen′s Inequality)
= (2 + L)q−1(1 + L)‖xn − x?‖q + (2 + L)q−1‖vn‖q,

we get

‖xn − Tyn‖q ≤ ‖xn − x?‖q + qL((1 + L)‖xn − x?‖+ ‖vn‖)‖xn − x?‖q−1

+cqL
q[(2 + L)q−1(1 + L)‖xn − x?‖q + (2 + L)q−1‖vn‖q]

= (1 + qL(1 + L) + cqL
q(2 + L)q−1(1 + L))‖xn − x?‖q

+cqL
q(2 + L)q−1‖vn‖q + ‖vn‖‖xn − x?‖q−1. (2.4)

Consequently from (2.1) -(2.4), we have

6



‖xn+1 − x?‖q ≤ ‖xn − x?‖q + qαn[(1 + L(1 + L))‖xn − x?‖q + L‖xn − x?‖q−1‖vn‖]
+αq

ncq[(1 + qL(1 + L) + cqL
q(2 + L)q−1(1 + L))‖xn − x?‖q

+cqL
q(2 + L)q−1‖vn‖q + ‖vn‖‖xn − x?‖q−1] + q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q

= (1 + δn)‖xn − x?‖q + θn.

Therefore (i) is valid.

(ii) It follows from conclusion (i) that for all n, m ≥ 1 and x? ∈ F (T )

‖xn+m − x?‖q ≤ (1 + δn+m−1)‖xn+m−1 − x?‖q + θn+m−1

≤ (1 + δn+m−1)(1 + δn+m−2)‖xn+m−3 − x?‖q

+(1 + δn+m−1)θn+m−2 + θn+m−1

≤ (1 + δn+m−1)(1 + δn+m−2)(1 + δn+m−3)‖xn+m−2 − x?‖q

+(1 + δn+m−1)(1 + δn+m−2)θn+m−3 + (1 + δn+m−1)θn+m−2 + θn+m−1

≤ ...

≤ e
∑n+m−1

k=n
δk‖xn − x?‖q + e

∑n+m−1

k=n
δk

∑n+m+1
k=n θk

≤ M‖xn − x?‖q + M
∑n+m+1

k=n θk,

where M = e
∑∞

k=1
δk . This shows that conclusion (ii) is also valid.

Theorem 2.1. Let q > 1 and E be a real q−uniformly smooth Banach space, K be a nonempty closed

convex subset of E, and T : K → K be a Lipschitz continuous mapping with constant L > 0 such that

F (T ) 6= ∅. Let {un} and {vn} be bounded sequences in E. Let {αn} and {βn} be real sequences in [0, 1]

satisfying
∑∞

n=1 ‖un‖ < ∞,
∑∞

n=1 ‖vn‖ < ∞ and
∑∞

n=1 αn < ∞. Let {xn} be the sequence generated from

an arbitrary x1 ∈ K by the Ishikawa iterative process (1.3) with errors. Then {xn} converges strongly to

a fixed point of T if and only if {xn} is bounded and

lim inf
n→∞

d(xn, F (T )) = 0,

where d(xn, F (T )) is the distance of xn to set F (T ), i.e., d(xn, F (T )) = infu?∈F (T )‖xn − u?‖.

Proof. The necessity is rather straightforword. We verify the sufficiency. Suppose that {xn} is bounded

and lim infn→∞ d(xn, F (T )) = 0. First, from Lemma 2.1(i), we obtain

‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn, ∀n ≥ 1, x? ∈ F (T ),
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where

δn = qαn(1 + L + L2) + αq
ncq(1 + qL(1 + L) + cqL

q(2 + L)q−1(1 + L)

and

θn = (qαnL + 1)‖xn − x?‖q−1‖vn‖+ αq
nc2

qL
q(2 + L)q−1‖vn‖q

+q‖un‖‖xn+1 − un − x?‖q−1 + cq‖un‖q.

Since
∑∞

n=1 ‖un‖ < ∞ and
∑∞

n=1 ‖vn‖ < ∞, we have
∑∞

n=1 ‖un‖q < ∞ and
∑∞

n=1 ‖vn‖q < ∞. Note

that {xn} and {un} are both bounded. Thus, there is a number M̃ > 0 such that ‖xn+1 − un − x?‖ ≤ M̃

and ‖xn − x?‖ ≤ M̃,∀n ≥ 1. Hence

∞∑
n=1

θn ≤
∞∑

n=1

((qL + 1)M̃ q−1‖vn‖+ c2
qL

q(2 + L)q−1‖vn‖q + q‖un‖M̃ q−1 + cq‖un‖q)

≤ (qL + 1)M̃ q−1
∞∑

n=1

‖vn‖+ c2
qL

q(2 + L)q−1
∞∑

n=1

‖vn‖q + qM̃ q−1
∞∑

n=1

‖un‖+ cq

∞∑
n=1

‖un‖q < ∞.

On the other hand, we have

∞∑
n=1

δn = q(1 + L + L2)
∞∑

n=1

αn + cq(1 + qL(1 + L) + cqL
q(2 + L)q−1(1 + L))

∞∑
n=1

αq
n < ∞.

Also, observe that

‖xn+1 − x?‖q ≤ (1 + δn)‖xn − x?‖q + θn ≤ ‖xn − x?‖q + δnM̃ q + θn. (2.5)

This implies that

(d(xn+1, F (T )))q ≤ [d(xn, F (T ))]q + δnM̃ q + θn.

From Lemma 1.1 we know that the sequence {‖xn − x?‖q} converges, so does the sequence {‖xn − x?‖}.

By Lemma 1.1 again, we infer that limn→∞(d(xn, F (T ))q exists, so does limn→∞ d(xn, F (T )). Since

limn→∞ infd(xn, F (T )) = 0, we have limn→∞ d(xn, F (T )) = 0.

Now, we claim that {xn} is Cauchy sequence. Indeed, according to Lemma 2.1(ii), we deduce that

there exists a constant M > 0 such that

‖xn+m − x?‖ ≤ M‖xn − x?‖q + M
n+m+1∑

k=n

θk,∀n, m ≥ 1, x? ∈ F (T ).
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Since limn→∞ d(xn, F (T )) = 0 and
∑∞

n=1 θn < ∞, for an arbitrary ε > 0, there exists an integer N1 ≥ 1

such that for all n ≥ N1

d(xn, F (T )) < (
ε

3M
)1/q · 1

2(q−1)/q
, and

∞∑
k=n

θk <
ε

6M
· 1
2q−1

.

Hence, d(xN1 , F (T )) < ( ε
3M )1/q · 1

2(q−1)/q . This implies that there exists an x?
1 ∈ F (T ) such that

d(xN1 , x
?
1) < (

ε

3M
)1/q · 1

2(q−1)/q
.

In view of Jensen’s Inequality, we conclude that

‖xn+m − xn‖q ≤ 2q−1(‖xn − x?
1‖q + ‖xn+m − x?

1‖q). (2.6)

Since for all n ≥ N1, we have

‖xn − x?
1‖q ≤ M‖xN1 − x?

1‖q + M
∑n

k=N1
θk

≤ M‖xN1 − x?
1‖q + M

∑∞
k=N1

θk

≤ M ε
3M · 1

2(q−1) + M ε
6M · 1

2q−1

= ε
2 ·

1
2q−1 ,

and
‖xn+m − x?

1‖q ≤ M‖xN1 − x?
1‖q + M

∑n+m−1
k=N1

θk

≤ M‖xN1 − x?
1‖q + M

∑∞
k=N1

θk

≤ M ε
3M · 1

2q−1 + M ε
6M · 1

2q−1

= ε
2 ·

1
2q−1 ,

so, from (2.6), we get

‖xn+m − xn‖q ≤ 2q−1(
ε

2
· 1
2q−1

+
ε

2
· 1
2q−1

) = ε, ∀n ≥ N1,m ≥ 1.

This shows that {xn} is Cauchy sequence. Since the space E is complete, limn→∞ xn exists. Thus, we may

assume that limn→∞ xn = u? and it is easy to show that u? is a fixed point of T . This completes the proof.
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