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1 INTRODUCTION

Let X be a real normed space and Y be a Hausdorff topological vector space. Let K

be a nonempty closed convex set in X and C be a nonempty subset in Y . Let Φ : K → 2C ,

Γ : K → 2K be two multifunctions and ψ : K × C × K → R be a single-valued map.

The implicit quasivariational inequality defined by Γ, Φ, ψ is the problem of finding a pair

(x̂, ẑ) ∈ K × C such that

x̂ ∈ Γ(x̂), ẑ ∈ Φ(x̂), ψ(x̂, ẑ, y) ≤ 0 ∀y ∈ Γ(x̂). (1)
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For short, the problem will be denoted by IQV I(K,Γ,Φ, ψ). If Γ is a constant mapping

and ψ(x, z, y) = 〈z, x− y〉 then the problem is called a generalized variational inequality.

If, in addition, Φ is a single-valued map, then one has a variational inequality. In the

finite-dimensional space, such problem was considered first by Chang and Pang in [3]. We

refer to [3]-[11], [13]-[18] for various sufficient conditions of solution existence of variational

inequalities and generalized quasivariational inequalities.

Problem (1) were first introduced by [6] with applications to fuzzy mappings. In [6], the

authors have obtained some existence results for (1) without assuming continuity of data

mappings and applied to generalized quasivariational inequalities. Recently, the results of

[6] has been extended to the case of infinite dimensional spaces by [7]. The results in [7]

were obtained by using the preceding results in the finite-dimensional spaces and building

a section multifunction which is lower semicontinuous on finite-dimensional subspaces. In

order to build the continuous section mapping, the authors had to assume the Hausdorff

lower semicontinuity of Γ and condition intaff(K)Γ(x) 6= ∅. However, this scheme might not

be applicable when Γ is not Hausdorff lower semicontinuous and condition intaff(K)Γ(x) 6= ∅
is violated.

The aim of this paper is to derive some existence theorems for IQV I(K,Γ,Φ, ψ) in

which Φ may not be continuous, K may be unbounded and Γ is not necessarily Hausdorff

lower semicontinuous. To do this, we will build a new scheme by approximating Γ with

multifunctions Hj which are lower semicontinuous on finite-dimensional subspaces. Our

results are improvements of results in [6] and [7].

The organization of the paper is as follows: Section 2 recalls some notions and auxiliary

results. In Section 3 we state and prove main results.

2 PRELIMINARIES

For each ρ > 0, we denote by

B(x0, ρ) := {x ∈ E : ‖x− x0‖ < ρ},

B(x0, ρ) := {x ∈ E : ‖x− x0‖ ≤ ρ}

the open ball and closed ball with radius ρ and center at x0, respectively. For each set

A ⊂ E and x ∈ E, d(x,A) := inf{‖x − y‖ : y ∈ A} is the distance from x to A.

Let Γ : K → 2Z be a multifunction from K ⊂ X into a normed space Z. The set

GrΓ := {(x, y) ∈ K ×Z : y ∈ Γ(x)} is called a graph of Γ. The multifunction Γ is said to

have closed (open) graph if GrΓ is closed (open) in X×Z. The multifunction Γ is said to

be lower semicontinuous at x ∈ K if for any open set V in Z such that V ∩Γ(x) 6= ∅, there

exists a neighborhood U(x) in X such that V ∩Γ(x) 6= ∅ for all x ∈ U(x)∩K. Γ is said to

be upper semicontinuous at x ∈ K if for any open set V in Z such that Γ(x) ⊂ V , there

exists a neighborhood W (x) of x with the property that Γ(x) ⊂ V for all x ∈ W (x) ∩K.
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Γ is said to be lower semicontinuous on X (u.s.c) if it is l.s.c (u.s.c) at every point x ∈ X.

Γ is said to be Hausdorff lower semicontinuous (resp., Hausdorff upper semicontinuous)

at x ∈ K if for any ε > 0, there exist a neighborhood W (x) such that

Γ(x) ⊂ Γ(x) + εB for all x ∈ W (x) ∩K

(resp.,Γ(x) ⊂ Γ(x) + εB for all x ∈ W (x) ∩K).

Here B is unit open ball in Z.

It is easy to check that Hausdorff lower semicontinuity implies lower semicontinuity and

upper semicontinuity implies Hausdorff upper semicontinuity. The converse implications

are true if each set Γ(x) is nonempty and compact.

Let Γ : K → 2K be a multifunction. For each ε > 0 we define the multifunction

Hε : K → 2K by putting Hε(x) = {w ∈ K : d(w,Γ(x)) < ε} and Hε : K → 2K by the

formula Hε(x) = Hε(x). It is easy to prove that if the set K is convex then the sets Hε(x)

and Hε(x) are convex and Hε(x) = {w ∈ K : d(w,Γ(x)) ≤ ε} (see also [5, Proposition

2.3]).

The multifunction Hε has some interesting properties. The following properties of Hε

will be needed in the sequel.

PROPOSITION 2.1 Let X be a normed space and K be a nonempty closed convex set in

X. Let Γ : K → 2K be a lower semicontiuous multifunction with closed convex values.

Then the following properties are valid:

(a) if y ∈ Hε(x) for some x ∈ K, then there exists a neighborhood U of x such that

y ∈ Hε(x) for all x ∈ U ;

(b) if E is a linear subspace of X such that Hε(x) ∩ E 6= ∅ for all x ∈ E, then the multi-

function Lε : K∩E → 2K∩E defined by setting Lε(x) = Hε(x)∩E, is lower semicontinuous

on K ∩ E in the relative topology of E.

Proof (a) Assume that the assertion is false. Then we can find a sequence {xn} such

that xn → x and d(y,Γ(xn)) ≥ ε. Take any z ∈ Γ(x). By the lower semicontinuity of

Γ, there exists a sequence {zn} such that zn ∈ Γ(xn) and zn → z. Since d(y,Γ(xn)) ≥ ε,

‖y − zn‖ ≥ ε. By letting n → ∞, we have‖y − z‖ ≥ ε. Hence d(y,Γ(x)) ≥ ε. This

contradicts the fact that y ∈ Hε(x).

(b) Let V be an open set in E and x0 be a point in E such that Lε(x0) ∩ V 6= ∅. Since V

is open in E, V = E ∩Ω for some open set Ω in X. Let y0 ∈ Lε(x0)∩ V be arbitrary. We

get y0 ∈ Hε(x0)∩Ω. By (a), there exists a neighborhood U of x0 such that y0 ∈ Hε(x)∩Ω

for all x ∈ U . Putting W = U ∩ E, we see that W is a neighborhood of x0 in E and

y0 ∈ Hε(x) ∩ Ω ∩ E 6= ∅ for all x ∈ W . This implies that Lε(x) ∩ V 6= ∅ for all x ∈ W .

Hence Lε is lower semicontinuous on K ∩ E in the relative topology of E. �

The following assertion was established in [5]. However, for the convenience of the

reader we will give another proof by a simple argument.
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PROPOSITION 2.2 Let X be a normed space and Γ : K → 2K be Hausdorff upper

semicontinuous. Then Hε has closed graph in K ×K.

Proof. We take sequences {xn} and {yn} in K such that d(yn,Γ(xn)) ≤ ε and xn → x0,

yn → y0 and show that d(y0,Γ(x0)) ≤ ε. In fact, for each n > 0, there exists zn ∈ Γ(xn)

such that ‖yn−zn‖ < ε+1/n. We take any µ > 0, by the Hausdorff upper semicontinuity

of Γ there exists n0 > 0 such that

Γ(xn) ⊂ Γ(x0) + µB for all n > n0,

from which it follows that

d(zn,Γ(x0)) < µ for all n > n0.

Therefore for all n > n0 we have

d(y0,Γ(x0)) ≤ ‖y0 − yn‖+ d(yn,Γ(x0))

≤ ‖y0 − yn‖+ ‖yn − zn‖+ d(zn,Γ(x0))

< ‖y0 − yn‖+ ε+ 1/n+ µ.

By letting n→∞ we obtain

d(y0,Γ(x0)) ≤ ε+ µ for all µ > 0.

This means that d(y0,Γ(x0)) ≤ ε. The proof is complete. �

3 EXISTENCE RESULTS

First, we have the following existence result in finite-dimensional spaces.

THEOREM 3.1 Let K be a nonempty convex compact set in Rm, C be a nonempty subset

in Y . Assume that the following conditions are fulfilled:

(i) the multifunction Γ is lower semicontinuous with nonempty convex values and the set

M := {x ∈ K : x ∈ Γ(x)} is closed;

(ii) the set Φ(x) is nonempty, compact for each x ∈ K and convex for each x ∈M ;

(iii) for each y ∈ K the set {x ∈M : infz∈Φ(x) ψ(x, z, y) ≤ 0} is closed;

(iv) for each x ∈M the set {y ∈ K : infz∈Φ(x) ψ(x, z, y) ≤ 0} is closed;

(v) for each x ∈M and each z ∈ Φ(x) one has ψ(x, z, x) = 0;

(vi) for each x ∈M and z ∈ Φ(x), the function ψ(x, z, .) is concave on Γ(x);

(vii) for each x ∈ M and each y ∈ Γ(x), the function ψ(x, ., y) is lower semicontinuous

(in the sense of single-valued maps) and convex on Φ(x).

Then IQV I(K,Γ,Φ, ψ) has a solution in K × C.
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Proof We will complete the proof of the theorem by proving some lemmas and using some

techniques in [6].

We first define the multifunction G : M → 2K by putting

G(x) = {y ∈ K : inf
z∈Φ(x)

ψ(x, z, y) > 0}.

If G(x∗) = ∅ for some x∗ ∈M then

inf
z∈Φ(x∗)

ψ(x∗, z, y) ≤ 0 ∀ y ∈ Γ(x∗),

and hence

sup
y∈Γ(x∗)

inf
z∈Φ(x∗)

ψ(x∗, z, y) ≤ 0.

By Theorem 5 at p. 216 of [1], taking into account assumptions (i), (ii), (vi) and (vii) we

then get

inf
z∈Φ(x∗)

sup
y∈Γ(x∗)

ψ(x∗, z, y) ≤ 0. (2)

By assumption (vii) the function z → supy∈Γ(x∗) ψ(x∗, z, y) is l.s.c. on the compact set

Φ(x∗). From this and (2) we can find a point z∗ ∈ Φ(x∗) such that

sup
y∈Γ(x∗)

ψ(x∗, z∗, y) ≤ 0.

Consequently, (x∗, z∗) is a solution. We now assume that G(x) 6= ∅ for all x ∈M .

LEMMA 3.1 The multifunction G : M → 2K has the following properties:

(a) G is lower semicontinuous on M and has convex values;

(b) G has a open graph in M ×K.

Proof It is easy to see that G(x) is a convex set by (vi). Let V be an open set and x0 ∈M
such that G(x0)∩V 6= ∅. Take y0 ∈ G(x0)∩V . Then y0 ∈ V and infz∈Φ(x0) ψ(x0, z, y0) > 0.

By (iii), there exists a neighborhood U of x0 such that infz∈Φ(x) ψ(x, z, y0) > 0 for all

x ∈ U ∩M . Hence we have y0 ∈ G(x) ∩ V for all x ∈ U ∩M . This means that G(x) is

l.s.c. on M .

For the proof of (b) we take (x, y) ∈ GrG. Then (x, y) belongs to M × K and

infz∈Φ(x) ψ(x, z, y) > 0. By (iv), there exists a neighborhood W of y such that

inf
z∈Φ(x)

ψ(x, z, y) > 0 ∀y ∈ W ∩K.

Hence W ∩K ⊂ G(x). By Proposition 2.1 in [4], there exist a neighborhood U of x and

a neighborhood W ′ ⊂ W such that W ′ ∩X ⊂ G(x) for all x ∈ U ∩M . This implies that

(U ∩M)× (W ′ ∩X) ⊂ GrG. Consequently, G has open graph in M ×K.
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We next define the multifunction F : M → 2K by setting

F (x) := Γ(x) ∩G(x) = {y ∈ Γ(x) : inf
z∈Φ(x)

ψ(x, z, y) > 0}.

LEMMA 3.2 The multifunction F is lower semicontinuous on M and F (x̂) = ∅ for some

x̂ ∈M .

Proof We first show that F is l.s.c. on M . Let x0 be a point in M and V be an open

set such that F (x0) ∩ V 6= ∅. Take any y0 ∈ F (x0) ∩ V . By (b) of Lemma 3.1, there

exist a neighborhood W of y0 and a neighborhood U1 of x0 such that W ∩K ⊂ G(x) for

all x ∈ U1 ∩M . Since Γ(x0) ∩W ∩ V 6= ∅ and Γ is lower semicontinuous at x0, there

exists a neighborhood U2 of x0 such that Γ(x) ∩W ∩ V 6= ∅ for all x ∈ U2 ∩M . Putting

U = (U1 ∩M) ∩ (U2 ∩M), we have

Γ(x) ∩G(x) ∩ V ⊃ Γ(x) ∩W ∩K ∩ V
= Γ(x) ∩W ∩ V 6= ∅

for all for all x ∈ U . Hence F (x)∩V 6= ∅ for all x ∈ U . This implies that F is l.s.c on M .

We now suppose that F (x) 6= ∅ for all x ∈ M . Then we can build the multifuction

T : K → 2K by the following formula

T (x) =

{
F (x) if x ∈M
Γ(x) if x /∈M.

It is clear that T has nonempty convex values. Moreover T is l.s.c. on K. Indeed, let V be

an open set and x0 be a point in K such that T (x0)∩V 6= ∅. If x0 ∈M then T (x0) = F (x0)

and F (x0) ∩ V 6= ∅. By the lower semicontinuity of F , there exists a neighborhood U1 of

x0 such that F (x) ∩ V 6= ∅ for all x ∈ U1 ∩M . Since F (x0) ⊂ Γ(x0), Γ(x0) ∩ V 6= ∅. By

the lower semicontinuity of Γ, there exists a neighborhood U2 of x0 such that U2 ⊂ U1 and

Γ(x) ∩ V 6= ∅ for all x ∈ U2 ∩X. It is easy to see that T (x) ∩ V 6= ∅ for all x ∈ U2 ∩X.

If x0 ∈ K \M , then T (x0) = Γ(x0) and Γ(x0) ∩ V 6= ∅. By the lower semicontinuity

of Γ and noting that K \M is an open set in K, there exist two neighborhoods U3 and

U4 of x0 such that Γ(x) ∩ V 6= ∅ for all x ∈ U3 ∩ X and U4 ∩ K ⊂ K \ M . Putting

U = (U3 ∩ K) ∩ (U4 ∩ K) we have T (x) ∩ V 6= ∅ for all x ∈ U . Thus there exists a

neighborhood U0 of x0 such that T (x)∩ V 6= ∅ for all x ∈ U0 ∩K. Sine x0 is arbitrary, T

is l.s.c. on K.

According to the Michael continuous selection theorem (Theorem 3.1
′′′
) in [12], there

exists a continuous function f : K → K such that f(x) ∈ T (x) for all x ∈ K. By the clas-

sical Brouwer fixed-point theorem, there exists a point x∗ such that x∗ = f(x∗) ∈ T (x∗).

This implies that x∗ ∈ F (x∗). Therefore from (v) we obtain 0 = infz∈Φ(x∗) ψ(x∗, z, x∗) > 0

which is absurd. The lemma is proved.
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To finish the proof of the theorem we will use Lemma 3.2. From the above lemma,

there exists x̂ ∈M such that F (x̂) = ∅. By the definition of F ,

x̂ ∈ Γ(x̂), inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0 ∀ y ∈ Γ(x̂).

Hence

sup
y∈Γ(x̂)

inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0.

According to Theorem 5 at p. 216 of [1], taking into account assumptions (i), (ii), (vi)

and (vii) we then get

inf
z∈Φ(x̂)

sup
y∈Γ(x̂)

ψ(x̂, z, y) ≤ 0. (3)

By assumption (vii) the function z → supy∈Γ(x̂) ψ(x̂, z, y) is l.s.c. on the compact set Φ(x̂).

Hence from (3) we can find a point ẑ ∈ Φ(x̂) such that

sup
y∈Γ(x̂)

ψ(x̂, ẑ, y) ≤ 0.

This means that (x̂, ẑ) is a solution of IQV I(K,Γ,Φ, ψ). The proof is now complete. �

To illustrate Theorem 3.1, we give the following example.

Example 3.1 Let X = Y = R, K = [0, 1] and C = [1, 4]. Let Γ, Φ and ψ be defined by:

Γ(x) =

{
{0} if x = 0

(0, 1] if 0 < x ≤ 1,

Φ(x) =

{
[2, 4] if x = 0

{1} if 0 < x ≤ 1,

ψ(x, z, y) = z(x2 − y2). Then the set {0} × [2, 4] is a solution set of IQV I(K,Γ,Φ, ψ).

Moreover Φ is not upper semicontinuous on [0, 1].

Indeed, it easy to check that Γ is l.s.c. on [0,1] and M = {x ∈ [0, 1] : x ∈ Γ(x)} = [0, 1].

Hence Condition (i) of Theorem 3.1 is valid. Condition (ii) is obvious. For each x, y ∈ [0, 1]

we have

{x′ ∈M : inf
z∈Φ(x′)

ψ(x′, z, y) ≤ 0} = [0, y].

and

{y′ ∈M : inf
z∈Φ(x)

ψ(x, z, y′) ≤ 0} = [x, 1].

Hence Conditions (iii) and (iv) are fulfilled. Conditions (v)-(vii) are straightforward to

verify.
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Taking x̂ = 0 and ẑ ∈ Φ(0) = [2, 4] we have 0 ∈ Γ(0) and

ψ(0, ẑ, y) = −ẑy2 ≤ 0 ∀y ∈ Γ(0).

This implies that the set {0}× [2, 4] is a solution set of the problem. Since xn = 1/n→ 0

and yn = 1 ∈ Φ(xn) but 1 /∈ Φ(0) = [2, 4], Φ is not u.s.c. on K.

When K is unbounded we have the following result.

THEOREM 3.2 Let K be a nonempty closed convex set in Rm, K0 be a compact set in K,

and C be a nonempty subset in Y . Assume (i) - (vii) as in Theorem 3.1 and the following

assumption:

(viii) for each x ∈M \K0 one has

sup
y∈Γ(x)∩K0

inf
z∈Φ(x)

ψ(x, z, y) > 0.

Then IQV I(K,Γ,Φ, ψ) has a solution in K0 × C.

Proof We now choose r > 0 such that K0 ⊂ intBr, where Br is the closed ball in Rm with

radius r and center at 0. We put Ωr = X ∩Br and define the multifunction Γr : Ωr → 2Ωr

by setting Γr(x) = Γ(x) ∩ Br. According to Lemma 3.1 in [18], Γr is l.s.c on Ωr. Put

Φr = Φ |Ωr , ψr = ψ |Ωr×C×Ωr . It is easy to check that IQV I(Ωr,Γr,Φr, ψr) satisfies all

conditions of Theorem 3.1. Hence there exists x̂ ∈ Ωr such that

x̂ ∈ Γr(x̂) and inf
z∈Φr(x̂)

ψr(x̂, z, y) ≤ 0 ∀y ∈ Γr(x̂).

Since Φr(x̂) = Φ(x̂) and ψr(x̂, z, y) = ψ(x̂, z, y) we get

x̂ ∈ Γ(x̂) and inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0 ∀y ∈ Γr(x̂). (4)

By (viii), we obtain x̂ ∈ K0 ⊂ intBr. Taking any y ∈ Γ(x̂) we have (1−λ)x̂+λy ∈ Γ(x̂)∩Br

for a sufficiently small λ ∈ (0, 1). From (4) and (vi) one has

λ inf
z∈Φ(x̂)

ψ(x̂, z, y) + (1− λ) inf
z∈Φ(x̂)

ψ(x̂, z, x̂) ≤

≤ inf
z∈Φ(x̂)

ψ(x̂, z, λy + (1− λ)x̂)

≤ 0.

This implies that infz∈Φ(x̂) ψ(x̂, z, y) ≤ 0. Therefore we obtain

sup
y∈Γ(x̂)

inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0.
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By a similar argument as in the proof of Theorem 3.1, we can show that there exists

(x̂, ẑ) ∈ K0 × Φ(x̂) such that

sup
y∈Γ(x̂)

ψ(x̂, ẑ, y) ≤ 0.

This implies that (x̂, ẑ) is a solution of IQV I(K,Γ,Φ, ψ). The proof is complete. �

The following example shows that our result can be still applied even in the case

intaff(K)(Γ(x)) = ∅.

Example 3.2 Let X = Y = R2, K = [0, 2]× [0, 2] and ψ(x, z, y) = 〈z, x− y〉. Let Γ and

Φ be defined by:

Γ(x) =

{
{(0, 0)} if x = (0, 0)

{(0, t) : 0 ≤ t ≤ 1} if x 6= (0, 0)

Φ(x) =

{
[2, 3]× [2, 3] if x = (0, 0)

{(1, 1)} if x 6= (0, 0).

Then the set {(0, 0)}× ([2, 3]× [2, 3]) is a solution set of IQVI(K,Γ,Φ, ψ). Moreover Φ is

not upper semicontinuous on K.

In fact, it is easy to check that conditions (i) and (ii) of Theorem 3.2 are fulfilled, where

M := {x ∈ K : x ∈ Γ(x)} = {(0, 0)}. Conditions (iii)-(vii) are also straightforward to

verify. Since K is a compact set, Condition (viii) is automatically fulfilled.

Taking x̂ = (0, 0) and ẑ ∈ Φ(x̂), we have x̂ ∈ Γ(x̂) and

〈ẑ, x̂− y〉 ≤ 0 ∀y ∈ Γ(x̂).

Hence the set {(0, 0)} × ([2, 3]× [2, 3]) is a solution set of the problem. We notice that Φ

is not u.s.c. at x̂ = (0, 0). Moreover, intaff(K)(Γ(x)) = ∅ because one has aff(K) = R2.

The following theorem presents a solution existence result of implicit quasivariational

inequalities in normed spaces.

THEOREM 3.3 Let X be a real normed space, Y be a Hausdorff topological space, K be

a closed convex subset in X, C be a nonempty subset in Y . Let K1, K2 be two nonempty

compact subsets of K such that K1 ⊂ K2 and K1 is finite-dimensional and γ > 0. Assume

that:

(i) the multifunction Γ is l.s.c with nonempty closed convex values and Hausdorff upper

semicontinuous;

(ii) Γ(x) ∩K1 6= ∅ for all x ∈ K;

(iii) the set Φ(x) is nonempty, compact and convex for each x ∈ K;

(iv) the set {(x, y) ∈ K ×K : infz∈Φ(x) ψ(x, z, y) ≤ 0} is closed;

(v) for each x ∈ K and each z ∈ Φ(x) one has ψ(x, z, x) = 0;

(vi) for each x ∈ K and z ∈ Φ(x), the function ψ(x, z, .) is concave on Γ(x);
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(vii) for each x ∈ K and each y ∈ Γ(x), the function ψ(x, ., y) is lower semicontinuous

(in the sense of single-valued maps) and convex on Φ(x);

(viii) for each x ∈ K \K2, with d(x,Γ(x)) ≤ γ, one has

sup
y∈Γ(x)∩K1

inf
z∈Φ(x)

ψ(x, z, y) > 0.

Then IQV I(K,Γ,Φ, ψ) has a solution.

Proof We will complete the proof by proving some lemmas.

For each j > 0, j ∈ N we define the multifunction Hj : K → 2K by putting

Hj(x) = {w ∈ K : d(w,Γ(x)) < 1/j}

and Hj : K → 2K by the formula Hj(x) = Hj(x) for all x ∈ K. We first claim that

Γ has a closed graph. Indeed, let {xn} and {zn} be two sequences with zn ∈ Γ(xn)

and satisfying zn → z, xn → x. If d(z,Γ(x)) > 0 then we can choose j > 0 such that

0 < 1/j < d(z,Γ(x)). Since Γ is Hausdorff u.s.c. and d(zn,Γ(xn)) ≤ 1/j, Proposition 2.2

implies d(z,Γ(x)) ≤ 1/j. This is absurd. Thus we must have d(z,Γ(x)) = 0. Since Γ(x)

is closed, z ∈ Γ(x) = Γ(x) as we claimed.

We denote by F the set of all finite-dimensional subspaces of X which contains K1. Fix

any S ∈ F and j > 0 with 1/j < γ, we define the multifunctions Pj : K ∩ S → 2K∩S by

setting Pj(x) = Hj(x)∩S and the mapping P j : X∩Y → 2X∩Y by putting P j(x) = Pj(x).

Here Pj(x) is closure of Pj(x) in S. By Proposition 2.1, P S
j is l.s.c. on K∩S in the relative

topology of S. Hence P j is also l.s.c. on K ∩ S. We now have

Pj(x) =Hj(x) ∩ SS = {w ∈ K ∩ S : d(w,Γ(x)) < 1/j}S

={w ∈ K ∩ S : d(w,Γ(x)) ≤ 1/j} = Hj(x) ∩ S.

Here AS denote the closure of a set A in S. Put

ΓS
j (x) = Pj(x), Ω = K ∩ S, K0 = K2 ∩ S;

MS = {x ∈ Ω : x ∈ ΓS
j (x)},ΦS = Φ | Ω, ψS = ψ | Ω× C × Ω.

The task is now to check that Theorem 3.2 can be applied to IQV I(Ω,ΓS
j ,Φ

S, ψS).

(a1) It is easily seen that ΓS
j has closed convex valued. Note that, ΓS

j is lower semicontin-

uous on Ω as stated above. By Proposition 2.1, Hj has closed graph. Since

MS = {x ∈ K : x ∈ Hj(x)} ∩ Ω,

we see that MS is closed. Hence assumption (i) of Theorem 3.2 is valid.

(a2) Assumption (ii) of Theorem 3.2 is obvious.
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(a3) For each y ∈ Ω we have

{x ∈MS : inf
z∈ΦS(x)

ψ(x, z, y) ≤ 0} = {x ∈ K : inf
z∈Φ(x)

ψ(x, z, y) ≤ 0} ∩MS

which is closed by assumption (iv). Consequently, assumption (iii) of Theorem 3.2 is

satisfied.

(a4) For each x ∈MS, we have

{y ∈ Ω : inf
z∈ΦS(x)

ψ(x, z, y) ≤ 0} = {y ∈ K : inf
z∈Φ(x)

ψ(x, z, y) ≤ 0} ∩ Ω

which is a closed set by assumption (iv). Hence assumption (iv) of Theorem 3.2 is also

valid.

(a5) Conditions (v), (vi) and (vii) of Theorem 3.2 are straightforward to verify.

(a6) Finally, for each x ∈ Ω \ K0 and x ∈ ΓS
j (x), we get x ∈ K \ K2 and d(x,Γ(x)) <

1/j < γ. By (viii), there exists y ∈ Γ(x) ∩K1 ⊂ ΓS
j (x) ∩K0 such that

inf
z∈Φ(x)

ψ(x, z, y) > 0.

Hence condition (viii) of Theorem 3.2 is valid.

Thus all conditions of Theorem 3.2 are fulfilled for the problem IQV I(Ω,ΓS
j ,Φ

S, ψS).

By Theorem 3.2, there exists xS ∈ K0 such that

xS ∈ ΓS
j (xS), inf

z∈Φ(xS)
ψ(xS, z, y) ≤ 0 ∀ y ∈ ΓS

j (xS). (5)

LEMMA 3.3 There exists x̂ ∈ K2 such that

x̂ ∈ Hj(x̂), inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0 ∀ y ∈ Hj(x̂). (6)

Proof Put QS = {xY : xY satisfies (5) with Y ⊃ S}. Then QS 6= ∅ because xS ∈
QS. Moreover the family {QS} has a finite intersection property. Indeed, taking any

Y, Z ∈ F and putting M = span{Y, Z}, we have QM ⊂ QY ∩ QZ . This implies that

QM ⊂ QY ∩QZ ⊂ QY ∩QZ . Since QS ⊂ K2, QS is compact for all S ∈ F . Hence⋂
S∈F

QS 6= ∅.

Consequently, there exists a point x̂ ∈ K2 such that x̂ ∈ QS for all S ∈ F .

For any S ∈ F , there exists a sequence {xn} such that xn ∈ QS and xn → x̂. By the

definition of QS one has

xn ∈ Hj(xn), inf
z∈Φ(xn)

ψ(xn, z, y) ≤ 0 ∀ y ∈ ΓS
j (xn). (7)
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Note that ΓS
j (x) = Hj(x) ∩ S. Since Hj has a closed graph, x̂ ∈ Hj(x̂). Take any

y ∈ ΓS
j (x̂). By the lower semicontinuity of ΓS

j , there exists a sequence {yn}, yn ∈ ΓS
j (xn)

such that yn → y. From (7) one has

inf
z∈Φ(xn)

ψ(xn, z, yn〉 ≤ 0.

Letting n→∞ and using (iv) we have infz∈Φ(x̂) ψ(x̂, z, y) ≤ 0. Thus

x̂ ∈ Hj(x̂), inf
z∈Φ(x̂)

ψ(x̂, z, y) ≤ 0 ∀ y ∈ Hj(x̂) ∩ S. (8)

Note that in (8) x̂ is independent of S. Take any v ∈ Hj(x̂) and put S ′ = span{v, S}.
Since x̂ satisfies (8) also for S ′ we have

x̂ ∈ Hj(x̂), inf
z∈Φ(x̂)

ψ(x̂, z, v) ≤ 0. (9)

Therefore (6) is valid and the lemma is proved.

The following lemma will finish the proof of the theorem.

LEMMA 3.4 There exists (x, z) ∈ K2 × C such that

x ∈ Γ(x), z ∈ Φ(x), ψ(x̂, z, y) ≤ 0 ∀ y ∈ Γ(x). (10)

Proof According to Lemma 3.3, for each j there exists x̂j ∈ K2 such that

x̂j ∈ Hj(x̂j), inf
z∈Φ(x̂j)

ψ(x̂j, z, y) ≤ 0 ∀ y ∈ Hj(x̂j). (11)

By the compactness of K2, we can assume that x̂j → x ∈ K2 as j →∞. By the definition

of Hj we have

d(x̂j,Γ(x̂j)) ≤ 1/j < 2/j.

Therefore there exists zj ∈ Γ(x̂j) such that ‖x̂j − zj‖ < 2/j. This implies that zj →
xinΓ(x). Take any y ∈ Γ(x). By the lower semicontinuity of Γ, there exists a sequence

{yj} such that yj ∈ Γ(x̂j) and yj → y. Since yj ∈ Hj(x̂j), it follows from (11) that

inf
z∈Φ(x̂j)

ψ(x̂j, z, yj) ≤ 0.

Letting j →∞ and using (iv) we get infz∈Φ(x) ψ(x, z, y) ≤ 0. Hence we obtain

sup
y∈Γ(x)

inf
z∈Φ(x)

ψ(x, z, y) ≤ 0.
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According to Theorem 5 at p. 216 of [1], taking into account assumptions (i), (iv), (vii)

and (viii) we then get

inf
z∈Φ(x)

sup
y∈Γ(x)

ψ(x, z, y) ≤ 0. (12)

By assumption (vii) the function z → supy∈Γ(x) ψ(x, z, y) is l.s.c. on the compact set Φ(x)

and by (12), there exists z ∈ Φ(x) such that

sup
y∈Γ(x)

ψ(x, z, y) = inf
z∈Φ(x)

sup
y∈Γ(x)

ψ(x, z, y) ≤ 0.

This means that (x, z) is a solution of IQV I(X,Γ,Φ, ψ). The proof is complete. �

In summary, we have shown that under certain conditions, the problem IQV I(X,Γ,Φ, ψ)

has a solution. Our Theorem 3.3 was inspired by Theorem 3.3 in [7], where the assumption

on Hausdorff lower semicontinuity of Γ and condition intaff(K)(Γ(x)) 6= ∅ were required.

These assumptions are necessary for building a section type multifunction Γ(x)∩S which

is lower semicontinuous on finite-dimensional subspace S of X. In the infinite-dimensional

setting, in general, a lower semicontinuous multifunction does not have such property, even

if X is an Hilbert space (see Remark 3.1 of [5]). It is noted that our results are valid not

only in a Banach space setting but also in a normed space setting. The reason is that in

the proof we do not need the compactness of the convex hull of a compact set. However,

in Theorem 3.3, Condition (viii) and Condition (iv) are rather strict. That is the price

we have to pay for omitting the Hausdorff lower semicontinuity of Γ and the condition

intaff(K)(Γ(x)) 6= ∅.
Recently, in [10] the authors have studied a general variational inclusion problem with

constraints which covers generalized qusivariational inequalities. An existence theorem

is given for the scalar problem which allows them to derive results on solution existence

of variational inequalities and Minty variational inequalities. However, these results were

obtained under assumptions that Φ is quasimonotone in a certain sense. In our problem

neither monotonicity nor continuity of Φ are required.
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