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1 Introduction

A wide variety of problems in discrete optimal control can be posed in the
following form.

Determine a control vector u = (u0, u1, ..., uN−1) ∈ U0 × U1 × · · · × UN−1

and a path x = (x0, x1, ..., xN) ∈ X0 × X1 × · · · × XN which minimize the
cost

N−1∑
k=0

hk(xk, uk, wk) + hN(xN) (1)

with state equation

xk+1 = Akxk + Bkuk + Tkwk, for all k = 0, 1, ..., N − 1, (2)

the constraints

uk ∈ Ωk ⊂ Xk for all k = 0, 1, ..., N − 1 (3)

and initial condition

x0 = x ∈ X0, (4)

where

k indexes discrete time,

xk is the state of the system and summarizes past information that is
relevant for future optimization,

uk is the control variable to be selected at time k with knowledge of the
state xk,

wk is a random parameter (also called disturbance or noise),

N is the horizon or number times control is applied,

Xk is a finite-dimensional space of state variables at stage k,

Uk is a finite-dimensional space of control variables at stage k,

Ωk is a nonempty set in Uk.

Wk is a finite-dimensional space of random parameters at stage k.

2



A classical example for the problem (1)-(4) is the inventory control prob-
lem where xk plays a stock available at the beginning of the kth period; uk

plays a stock order at the beginning of the kth period and wk is the demand
during the kth period with given probability distribution; and the cost func-
tion has the form ΣN−1

k=0 cuk + H(xk + uk − wk) together with state equation
xk+1 = xk + uk − wk (see [3] for details).

Put W = W0 × W1 × · · · × WN−1, X = X0 × X1 × · · · × XN and U =
U0 ×U1 × · · · ×UN−1. We denote by V (w) the optimal value of the problem
(1)-(4) corresponding to the parameter w = (w0, w1, ..., wN−1) ∈ W . Thus
V : W → R is an extended real-valued function which is called the value
function of the problem (1)-(4).

The study of first-oder behavior of value functions is of importance in
analysis and optimization. An example of this type is distance functions
and its applications in optimal control problems with differential inclusions
(e.g., [1], [8], [26]). There have been many papers dealt with differentia-
bility properties and the Fréchet subdifferential of value functions in the
literature (e.g., [6], [16], [18], [21]). Under Lipschitzian conditions and the
assumption that the solution set of perturbed problems is nonempty in a
neighborhood of a unperturbed problem, Clarke [6, Theorem 6.52] estab-
lished a useful formula for the generalized gradient of value function. By
considering a set of assumptions which involves a kind of coherence property,
Penot [21] showed that the value functions are Fréchet differentiable. The
results of Penot gave sufficient conditions under which the value functions
are Fréchet differentiable rather than formulas computing their derivatives..
In [16], Mordukhovich, Nam and Yen derived formulas for computing and es-
timating the so-called Fréchet suddiferential of value functions of parametric
mathematical programming problems in Banach spaces without Lipschitzian
assumptions.

Beside the study of first-oder behavior of value functions in parametric
mathematical programming, the study of first-oder behavior of value func-
tions in optimal control is also of interest especially because of potential con-
nections with feedback rules as well as Hamilton-Jacobi-Bellman equations.
We refer the reader to [20], [22], [24] and [25] for recent studies on sensitivity
analysis of the optimal-value function in parametric optimal control. In par-
ticular, Seeger [24] obtained a formula for the approximate subdifferential of
convex analysis of V to the case where hk and Ωk were assumed to be con-
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vex, and the problem can have no optimal paths. It is noted that if Ωk and
hk are convex for all k = 0, 1, ..., N , then V becomes a convex function. In
this case, we can compute the subdifferential of V via subgradients of convex
functions. However, the situation will be more complicated if hk and Ωk are
not convex because subgradients of convex functions fail to apply.

It is well recognized that the function V can fail to be smooth despite
any degree of smoothness of hk. The aim of this paper is to derive some new
formula for computing the so-called Fréchet subdifferential of V via the tool
of generalized differentiation. In order to obtain the result, we first establish
a formula for computing and estimating the Fréchet subdifferential of the
value functions for a special class of parametric mathematical programming
problems (Theorem 2.1). Then we apply Theorem 2.1 to prove Theorem 1.1
which is the main result of this paper. Our proof of Theorem 2.1 closely
follows the method of [16]. However, we deal with the formula of basic
normals to set intersections in the product of Asplund spaces and establish
a formula for computing the normal cone of contraint sets.

Let us recall some notions related to generalized differentiation. The
notions and results of generalized differentiation can be found in [14] and [15].
Let ϕ : Z → R be a extended-real-valued function on a finite dimensional
space Z and x ∈ Z be such that ϕ(x) is finite. The set

∂̂ϕ(x) := {x∗ ∈ X| lim inf
x→x

ϕ(x)− ϕ(x)− 〈x∗, x− x〉
‖x− x‖

≥ 0} (5)

is called the Fréchet subdifferential of ϕ at x. A vector x∗ ∈ ∂̂ϕ(x) is called
a Fréchet subgradient of ϕ at x. It is known that the Fréchet subdifferential
reduces to the classical Fréchet derivative for differentiable functions and to
subdifferential of convex analysis for convex functions. The set ∂̂+ϕ(x) :=
−∂̂(−ϕ)(x) is called the upper subdifferential of ϕ at x.

Let Ω be a nonempty set in Z. Given z ∈ Ω and ε ≥ 0, define the set of
ε-normal by

N̂ε(z; Ω) := {z∗ ∈ Z∗| lim sup
z→z

〈z∗, z − z〉
‖z − z‖

≤ ε}. (6)

When ε = 0, the set N̂(z; Ω) := N̂0(z; Ω) is called the Fréchet normal cone to
Ω at z. It is also well known that if δ(z, Ω) is the indicator function of Ω, i.e.,
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δ(z, Ω) := 0 if z ∈ Ω and δ(z, Ω) := ∞ otherwise, then N̂(z; Ω) = ∂̂δ(z; Ω).
A vector z∗ ∈ Z∗ (the dual space of Z) is called a limiting normal to Ω
at z if there exist sequences εk → 0+, zk → z, and z∗k → z∗ such that

z∗k ∈ N̂εk
(zk; Ω). The collection of such normals is called the Mordukhovich

normal cone to Ω at z and is denoted by N(z; Ω). The set Ω is said to be

normally regular at z ∈ Ω (in the sense of [14]) if N̂(z; Ω) = N(z; Ω). It is
also well known that if Ω is locally convex at z, then it is normally regular
at z (see [14, Pr.1.5]).

Let F : Z ⇒ E be a set-valued mapping from Z to a finite-dimensional
space E with the domain

domF := {z ∈ Z|F (z) 6= Ø}

and the graph
gphF := {(z, v) ∈ Z × E|v ∈ F (z)}.

We say that the mapping F admits a locally upper Lipschitzian selection at
(z, v) ∈ gphF if there is a single-valued mapping h : Z → E, which is locally
upper Lipschitzian at z, i.e., there exist numbers η > 0 and l > 0 such that
for any z ∈ Z with ‖z − z‖ < η, we have

‖h(z)− h(z)‖ ≤ l‖z − z‖

which satisfies h(z) = v and h(z) ∈ F (z) for all z in a neighborhood of z.

We now return to the problem (1)-(4). For each w = (w0, w1, ..., wN−1) ∈
W we put

f(x, u, w) =
N−1∑
k=0

hk(xk, uk, wk) + hN(xN), (7)

G(w) = {(x, u) ∈ X × U |xk+1 = Akxk + Bkuk + Tkwk, ∀ k = 0, 1, ..., N − 1}
(8)

and Ω = Ω0 ×Ω1 × · · · ×ΩN−1. Then the problem (1)-(4) can be formulated
in the following simpler form

V (w) := inf
(x,u)∈G(w)∩(X×Ω)

f(x, u, w). (9)
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We denote by S(w) the solution set of the problem (1)-(4) corresponding
to the parameter w ∈ W . It is also assumed that (x, u) is a solution of
the problem at w, that is (x, u) ∈ S(w) where x = (x0, x1, ..., xN), u =
(u0, u1, ..., uN−1) and w = (w0, w1, ..., wN−1).

We are now ready to state our main result.

Theorem 1.1 Let the value function V defined by (9) be finite at some
w ∈ domS, hN be Fréchet differentiable at xN and hk be Fréchet differ-
entiable at (xk, uk, wk) for k = 0, ..., N − 1. Assume that Tk is surjective
and Ωk are normally regular at uk for all k = 0, 1, ..., N − 1. Then for
w∗ = (w∗

0, w
∗
1, ..., w

∗
N−1) ∈ W to be a Fréchet subgradient of V at w =

(w0, w1, ..., wN−1), it is necessary that there exist u∗ = (u∗0, u
∗
1, ..., u

∗
N−1) ∈

N̂(u; Ω) and z∗ = (z∗1 , z
∗
2 , ..., z

∗
N) ∈ X1 ×X2 × · · · ×XN such that


w∗

k = ( ∂hk

∂wk
)(xk, uk, wk) + T ∗

k z∗k+1 for k = 0, 1, ..., N − 1.

(∂h0

∂x0
)(x0, u0, w0) = −A∗

0z
∗
1 , (∂hN

∂xN
)(xN) = z∗N ,

(∂hk

∂xk
)(xk, uk, wk) = z∗k − A∗

kz
∗
k+1 for k = 1, 2, ..., N − 1,

(∂hk

∂uk
)(xk, uk, wk) = −u∗k −B∗

kz
∗
k+1 for k = 0, 1, ..., N − 1.

The above condition is also sufficient for w∗ ∈ ∂̂V (w) if the solution map S
has an upper Lipschitzian selection at (w, x, u).

When uk ∈ intΩk (the interior of Ωk) or Ωk = Uk for k = 0, 1, ..., N − 1,

one has N̂(uk; Ωk) = {0}. In this case we have the following result.

Corollary 1.1 Assume assumptions as in Theorem 1.1 and N̂(u; Ω) = {0}.
Then for w∗ = (w∗

0, w
∗
1, ..., w

∗
N−1) ∈ W to be a Fréchet subgradient of V at

w = (w0, w1, ..., wN−1), it is necessary that there exists z∗ = (z∗1 , z
∗
2 , ..., z

∗
N) ∈

X1 ×X2 × · · · ×XN such that


w∗

k = ( ∂hk

∂wk
)(xk, uk, wk) + T ∗

k z∗k+1 for k = 0, 1, ..., N − 1.

(∂h0

∂x0
)(x0, u0, w0) = −A∗

0z
∗
1 , (∂hN

∂xN
)(xN) = z∗N ,

(∂hk

∂xk
)(xk, uk, wk) = z∗k − A∗

kz
∗
k+1 for k = 1, 2, ..., N − 1,

(∂hk

∂uk
)(xk, uk, wk) = −B∗

kz
∗
k+1 for k = 0, 1, ..., N − 1.
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The above condition is also sufficient for w∗ ∈ ∂̂V (w) if the solution map S
has an upper Lipschitzian selection at (w, x, u).

In order to prove Theorem 1.1, we shall need a result on the Fréchet
subdifferential of the value functions from a abstract model which is contained
in the next section.

2 A result on the Fréchet subdifferential of

value functions

Let X, Y and Z be finite-dimensional spaces. Assume that A : X → Z and
T : Y → Z are linear mappings. Let A∗ : Z → X and T ∗ : Z → Y be adjoint
mappings of A and T , respectively. Let f : X × Y → R be a function. For
each w ∈ Y , we put

G(w) := {x ∈ X|Ax = Tw}. (10)

Let w ∈ Y and K be a nonempty set in X such that K ∩ G(w) 6= Ø for all
w in a neighborhood of w. Consider the problem

µ(w) := inf
x∈G(w)∩K

f(x, w). (11)

We denote by M(w) the solution set of the problem (11) corresponding to
the parameter w ∈ Y . Assume that x is a solution of the problem (11)
corresponding to the parameter w, i.e., x ∈ M(w).

The following result gives a formula computing the Fréchet subdifferential
of µ at w.

Theorem 2.1 Let the value function µ defined by (11) be finite at w ∈
domM , and let x ∈ M(w) be such that ∂̂+f(x, w) 6= Ø. Assume that imA ⊂
imT and K is normally regular at x. Then one has

∂̂µ(w) ⊂
⋂

(x∗,v∗)∈∂̂+f(x,w)

⋃
u∗∈N̂(x;K)

[v∗ + T ∗((A∗)−1(x∗ + u∗))]. (12)
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If in addition, f is Fréchet differentiable at (x, w) and the solution map M
has an upper Lipschitzian selection at (w, x), then

∂̂µ(w) =
⋃

u∗∈N̂(x;K)

[∇wf(x, w) + T ∗((A∗)−1(∇xf(x, w) + u∗))]. (13)

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.1 Assume that imA ⊂ imT and (w, x) ∈ gphG. Then one has

N̂((w, x); gphG) = {(−T ∗z∗, A∗z∗)|z∗ ∈ Z}. (14)

Proof. Since gphG is a closed convex set, the Fréchet normal cone
N̂((w, x); gphG) coincides with the normal cone in the sense of convex anal-
ysis. For the convenience we put Q = gphG. We now claim that if
(w∗, x∗) ∈ NQ(w, x) which is the normal cone to Q at (w, x) in the sense
of convex analysis, then (−w∗, x∗) ∈ imT ∗× imA∗. On the contrary, suppose
that (−w∗, x∗) /∈ imT ∗ × imA∗. By the separation theorem for convex sets,
there exists (w0, x0) ∈ Y ×X such that

〈(−w∗, x∗), (w0, x0)〉 > 〈(T ∗u∗, A∗u∗), (w0, x0)〉 ∀u∗ ∈ Y.

This is equivalent to

−〈w∗, w0〉+ 〈x∗, x0〉 > 〈u∗, Tw0 + Ax0〉 ∀u∗ ∈ Y.

Hence 〈x∗, x0〉 − 〈w∗, w0〉 > 0 and Tw0 + Ax0 = 0. Putting w′
0 = −w0, one

has (w′
0, x0) ∈ Q and 〈x∗, x0〉+ 〈w∗, w′

0〉 > 0. Since (w∗, x∗) ∈ NQ(w, x),

〈(w∗, x∗), (w − w, x− x)〉 ≤ 0 ∀ (w, x) ∈ Q. (15)

Putting xt = x + tx0 and wt = w + tw′
0, we have (wt, xt) ∈ Q for all t > 0.

Substituting (wt, xt) into (15) yields

〈w∗, tw′
0〉+ 〈x∗, tx0〉 ≤ 0.

This implies
〈w∗, w′

0〉+ 〈x∗, x0〉 ≤ 0,
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which contradicts the fact 〈x∗, x0〉 + 〈w∗, w′
0〉 > 0 derived above. Thus our

claim is proved.

Take any (w∗, x∗) ∈ NQ(w, x). By the claim established above, there
exists z∗ ∈ Z∗ such that −w∗ = T ∗z∗. By the definition of the normal cone,
we have

〈(−T ∗z∗, x∗), (w − w, x− x)〉 ≤ 0 ∀ (w, x) ∈ Q.

This is equivalent to

〈−z∗, Tw − Tw〉+ 〈x∗, x− x)〉 ≤ 0 ∀ (w, x) ∈ Q. (16)

Since imA ⊂ imT , for any x ∈ X there exists w ∈ Y such that Tw = Ax.
Putting xt = x + tx and wt = w + tw, we see that (wt, xt) ∈ Q for all t > 0.
Substituting (wt, xt) into (16), we have

〈−z∗, tTw〉+ 〈x∗, tx〉 ≤ 0

which implies that
〈−A∗z∗, x〉+ 〈x∗, x〉 ≤ 0.

Since x is arbitrary, x∗ = A∗z∗. Conversely, assume that (w∗, x∗) =
(−T ∗z∗, A∗z∗) for some z∗ ∈ Z. If (w∗, x∗) 6∈ NQ(w, x), then there exists
(w, x) ∈ Q such that

〈(−T ∗z∗, A∗z∗), (w − w, x− x)〉 > 0

which is equivalent to

〈−z∗, Tw − Tw〉+ 〈z∗, Ax− Ax〉 > 0.

Hence

0 = 〈−z∗, Ax−Ax〉+ 〈z∗, Ax−Ax〉 = 〈−z∗, Tw−Tw〉+ 〈z∗, Ax−Ax〉 > 0,

which is absurd. Therefore (w∗, x∗) ∈ NQ(w, x) and the proof of the lemma
is complete.

Lemma 2.2 Let P = Y × K and Q = gphG. Assume that (w, x) ∈ P ∩ Q
and K is normally regular at x. Then one has

N̂((w, x); P ∩Q) = {0} × N̂(x; K) + N̂((w, x); Q).
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Proof. we note that

N̂((w, x); P ) = N̂(w; Y )× N̂(x; K) = {0} × N̂(x; K).

Hence the set P is also normally regular at (w, x). Since Q is convex, it is
normal regular at (w, x). It remains to show that the system sets {P, Q}
satisfies the normal qualification condition, that is,

N̂((w, x); Q) ∩ [−N̂((w, x); P )] = {(0, 0)}.

Take any (w∗, x∗) ∈ N̂((w, x); Q) ∩ [−N̂((w, x); P )]. Then we have w∗ = 0,

−x∗ ∈ N̂(x; K) and w∗ = −T ∗z∗, x∗ = A∗z∗ for some z∗ ∈ Z. If x∗ 6= 0, then
there exists x ∈ X such that 〈x∗, x〉 = 〈A∗z∗, x〉 6= 0. Hence 〈z∗, Ax〉 6= 0.
Since imA ⊂ imT , there exists w ∈ Y such that Ax = Tw. Consequently,
we have

0 6= 〈z∗, Ax〉 = 〈z∗, Tw〉 = 〈T ∗z∗, w〉 = 0,

which is absurd. Thus we must have x∗ = 0 and so the normal qualification
condition is satisfied. According to Theorem 3.4 in [14], we have

N̂((w, x); P ∩Q) = {0} × N̂(x; K) + N̂((w, x); Q).

The proof of the lemma is now complete.

Proof of Theorem 2.1. In the arguments below, we will use some tech-
niques from [16].

Take any w∗ ∈ ∂̂µ(w). Then for any ε > 0, there exists a neighborhood
U of w such that

〈w∗, w − w〉 ≤ µ(w)− µ(w) + ε‖w − w‖ ∀ w ∈ U.

Hence

〈w∗, w − w〉 ≤ f(x, w)− f(x, w) + ε‖w − w‖ (17)

for all w ∈ U and x ∈ G(w) ∩ K. Taking any (x∗, v∗) ∈ ∂̂+f(x, w), we have
−(x∗, v∗) ∈ ∂̂(−f)(x, w). By Theorem 1.88 in [14], there exists a function
s : X × Y → R that is finite around (x, w), Fréchet differentiable at w and
satisfies the following relations:

s(x, w) = f(x, w),∇s(x, w) = (x∗, v∗), and s(x, w) ≥ f(x, w) ∀(x, w) ∈ X×Y.
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From the above relations and (17), we get

〈w∗, w − w〉 ≤ s(x, w)− s(x, w) + ε‖w − w‖ ∀ w ∈ U, x ∈ G(w) ∩K. (18)

By using the Taylor expansion, (18) implies

〈w∗, w−w〉 ≤ 〈∇s(x, w), (x− x, w−w)〉+ o(‖x− x‖+ ‖w−w‖) + ε‖w−w‖

for all w ∈ U and x ∈ G(w) ∩K. This is equivalent to saying that

〈w∗ − v∗, w − w〉 − 〈x∗, x− x〉 ≤ o(‖x− x‖+ ‖w − w‖) + ε‖w − w‖

for all (w, x) ∈ (U ×K) ∩Q.

Since ε was chosen arbitrarily, it yields

lim sup

(w,x)
P∩Q−−−→(w,x)

〈(w∗ − v∗,−x∗), (w, x)− (w, x)〉
‖w − w‖+ ‖x− x‖

≤ 0,

from which it follows that

(w∗ − v∗,−x∗) ∈ N̂((w, x); P ∩Q).

By Lemma 2.2,

(w∗ − v∗,−x∗) ∈ {0} × N̂(x; K) + N̂((w, x); Q).

Hence there exists u∗ ∈ N̂(x; K) such that (w∗−v∗,−x∗−u∗) ∈ N̂((w, x); Q).
By Lemma 2.1, there exists z∗ ∈ Y such that w∗−v∗ = −T ∗z∗ and−x∗−u∗ =
A∗z∗. This implies that w∗ = v∗ + T ∗(−z∗) and −z∗ ∈ (A∗)−1(x∗ + u∗).
Consequently, w∗ ∈ v∗ + T ∗[(A∗)−1(x∗ + u∗)] and so we obtain the first
assertion.

In order to prove the second assertion, it is sufficient to show that

∂̂µ(w) ⊃
⋃

u∗∈N̂(x;K)

[∇wf(x, w) + T ∗((A∗)−1(∇xf(x, w) + u∗))]. (19)

On the contrary, suppose that there exists w∗ ∈ Y such that

w∗ ∈
( ⋃

u∗∈N̂(x;K)

[∇wf(x, w) + T ∗((A∗)−1(∇xf(x, w) + u∗))]
)
\∂̂µ(w). (20)
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Then we can find an ε > 0 and a sequence wk → w such that

〈w∗, wk − w〉 > µ(wk)− µ(w) + ε‖wk − w‖. (21)

Let h be an upper Lipschitzian selection of the solution map M . Putting
xk = h(wk), we have xk ∈ M(wk) and ‖xk − x‖ ≤ l‖wk − w‖ for k > 0
sufficiently large. Hence (21) implies

〈w∗, wk − w〉 > µ(wk)− µ(w) + ε‖wk − w‖
= f(xk, wk)− f(x, w) + ε‖wk − w‖
= 〈∇xf(x, w), xk − x〉+ 〈∇wf(x, w), wk − w〉
+ o(‖xk − x‖+ ‖wk − w‖) + ε‖wk − w‖
≥ 〈∇xf(x, w), xk − x〉+ 〈∇wf(x, w), wk − w〉

+ o(‖xk − x‖+ ‖wk − w‖) +
ε

2
‖wk − w‖+

lε

2
‖xk − x‖.

Putting ε̂ = min{ε/2, lε/2}, we get

〈(w∗ −∇wf(x, w),−∇xf(x, w)), (wk − w, xk − x)〉
> o(‖xk − x‖+ ‖wk − w‖) + ε̂(‖wk − w‖+ ‖xk − x‖).

Consequently,

lim sup

(w,x)
P∩Q−−−→(w,x)

〈(w∗ −∇wf(x, w),−∇xf(x, w)), (w − w, x− x)〉
‖w − w‖+ ‖x− x‖

≥ ε̂.

This means that

(w∗ −∇wf(x, w),−∇xf(x, w)) /∈ N̂((w, x); Q ∩ P ).

By Lemma 2.1 and Lemma 2.2, we have

(w∗ −∇wf(x, w),−∇xf(x, w)− u∗) /∈ N̂((w, x); Q) = {(−T ∗z∗, A∗z∗)|z∗ ∈ Z}
(22)

for all u∗ ∈ N̂(x; K). From (20) we can find a vector u∗ ∈ N̂(x; K) such
that w∗ − ∇wf(x, w) ∈ T ∗[(A∗)−1(∇xf(x, w) + u∗)]. Hence there is z∗ ∈
(A∗)−1(∇xf(x, w)+w∗) such that w∗−∇wf(x, w) = T ∗z∗. This implies that

w∗ −∇wf(x, w) = −T ∗(−z∗) and −∇xf(x, w)− w∗ = A∗(−z∗).
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Consequently,

(w∗−∇wf(x, w),−∇xf(x, w)−u∗) ∈ N̂((w, x); Q) = {(−T ∗z∗, A∗z∗)|z∗ ∈ Z},

which contradicts to (22). Hence the second assertion is also valid and the
proof of the theorem is complete. �

Remark 2.1 In Theorem 2.1, if we require that X, Y and Z are Asplund
spaces (see [14, 15] for the definition of Asplund spaces) and imA∗ and imT ∗

are closed sets, then the conclusion of the theorem is still valid.

Let us give an illustrative example for Theorem 2.1.

Example 2.1 Let X = Y = R2, K = (−3, 3)× (−3, 3),

f(x, w) =
√

2(x2
1 + x2

2)− w3
1 + w3

2

and G(w) = {(x1, x2) ∈ R2|x1 + x2 = 2w1 + w2}. Assume that w = (1, 0)

and w∗ = (w∗
1, w

∗
2) ∈ ∂̂µ(w). Then one has w∗ = (−1, 1).

Indeed, for w = (1, 0) we have

µ(w) = inf
(x1,x2)∈G(w)∩K

{
√

2(x2
1 + x2

2)− 1},

where G(w) = {(x1, x2) ∈ R2|x1 +x2 = 2}. It is easy to check that x = (1, 1)
is the unique solution of the problem corresponding to w and µ(w) = 1.

Since x ∈ intK, N̂(x; K) = {(0, 0)}. Hence (12) becomes

∂̂µ(w) ⊂
⋂

(x∗,v∗)∈∂̂+f(x,w)

[v∗ + T ∗((A∗)−1(x∗))]

= {(−3, 0) + T ∗((A∗)−1(1, 1))}
(23)

Note that

A∗ =

[
1
1

]
and T ∗ =

[
2
1

]
.

Hence (A∗)−1(1, 1)) = 1 and T ∗((A∗)−1(1, 1)) = (2, 1). Combining this

with (23), we get ∂̂µ(w) ⊂ {(−1, 1)}. By computing directly, we see that

13



x = (2w1+w2

2
, 2w1+w2

2
) is a unique solution of the problem corresponding to

w = (w1, w2) in a neighborhood of w. Thus the solution map is Lipschitz
continuous on a neighborhood of w. Hence we obtain ∂̂µ(w) = {(−1, 1)}.

3 Proof of Theorem 1.1

In what follows, we will formulate the problem (1)-(4) in the form of the
problem (10)-(11) and use the abstract result in section 2 to finish the proof.

Put Z = X×U , K = X×Ω, Y = X1×X2×· · ·×XN . Then the problem
(1)-(4) can be written as the following form:

V (w) = inf
z∈G(w)∩K

f(z, w),

where
G(w) = {z = (x, u) ∈ Z|Az = Tw},

A : Z → Y and T : W → Y are defined, respectively, by

Az =


−A0 I 0 0 ... 0 0 −B0 0 0 0 ... 0

0 −A1 I 0 ... 0 0 0 −B1 0 0 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 ... −AN−1 I 0 0 0 0 ... −BN−1





x0

x1

.

.

.
xN

u0

u1

.

.

.
uN−1



Tw =


T0w0

T1w1

.

.

.
TN−1wN−1
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According to Theorem 2.1, it follows that if w∗ ∈ ∂̂V (w) then there exist a

vector u∗ ∈ N̂(z; K) and z∗ = (z∗1 , z
∗
2 , ..., z

∗
N) ∈ Y such that

w∗ = ∇wf(z, w) + T ∗z∗ and ∇zf(z, w) + u∗ = A∗z∗. (24)

It remains to compute ∇wf(z, w), ∇zf(z, w), T ∗z∗ and A∗z∗.

Step 1 (Computation of ∇wf(z, w) and ∇zf(z, w)). Since

f(z, w) = f(x, u, w) =
N−1∑
k=0

hk(xk, uk, wk) + hN(xN),

we have

∇wf(x, u, w) =
N−1∑
k=0

∇whk(xk, uk, wk)

=
( ∂h0

∂w0

(x0, u0, w0),
∂h0

∂w1

(x1, u1, w1), ...,
∂hN−1

∂wN−1

(xN−1, uN−1, wN−1)
)
.

Also, we get

∇zf(x, u, w) =
N−1∑
k=0

(
∇xhk(x, u, w),∇uhk(x, u, w)

)
=

(∂h0

∂x0

(x0, u0, w0), ...,
∂hN−1

∂xN−1

(xN−1, uN−1, wN−1),
∂hN

∂xN

(xN);

∂h0

∂u0

(x0, u0, w0), ...,
∂hN−1

∂uN−1

(xN−1, uN−1, wN−1)
)
.

Step 2 (Computation of T ∗z∗ and A∗z∗). It is easy to verify that T ∗z∗ =
[T ∗

0 z∗1 , T
∗
1 z∗2 , ..., T

∗
N−1z

∗
N ]. From the formula of A, we get

A∗z∗ =



−A∗
0 0 0 ... 0

I −A∗
1 0 ... 0

0 I 0 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 ... −A∗
N−1

0 0 0 ... I
−B∗

0 0 0 ... 0
0 −B∗

1 0 .... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 ... −B∗
N−1




z∗1
z∗2
.
.
.

z∗N

 .
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Note that N̂(z; K) = {0} × N̂(u; Ω). Hence u∗ = (0, u∗) for some u∗ =

(u∗0, u
∗
1, ..., u

∗
N−1), where u∗k ∈ N̂(uk; Ωk) for k = 0, 1, ..., N − 1.

We now substitute ∇wf(z, w), ∇zf(z, w)), T ∗z∗, A∗z∗ and u∗ = (0, u∗)
into (24). From the first equation of (24), we obtain

w∗
k =

∂hk

∂wk

(xk, uk, wk) + T ∗
k z∗k for k = 0, 1, ..., N − 1.

The second equation of (24) gives

(∂h0

∂x0

(x0, u0, w0), ...,
∂hN−1

∂xN−1

(xN−1, uN−1, wN−1),
∂hN

∂xN

(xN)
)

= (25)

=


−A∗

0 0 0 ... 0
I −A∗

1 0 ... 0
0 I −A∗

2 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 ... −A∗
N−1

0 0 0 ... I




z∗1
z∗2
.
.
.

z∗N


and (∂h0

∂u0

(x0, u0, w0), ...,
∂hN−1

∂uN−1

(xN−1, uN−1, wN−1)
)

+ u∗ = (26)

=


−B∗

0 0 0 ... 0
0 −B∗

1 0 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 ... −B∗
N−1




z∗1
z∗2
.
.
.

z∗N

 .

Hence from equation (25), we have

∂h0

∂x0
(x0, u0, w0) = −A∗

0z
∗
1

∂h1

∂x1
(x1, u1, w1) = z∗1 − A∗

1z
∗
2

· · · · · · · · · · · · · · ·
∂hN−1

∂xN−1
(xN−1, uN−1, wN−1) = z∗N−1 − A∗

N−1z
∗
N

∂hN

∂xN
(xN)

)
= z∗N .
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Also (26) implies ∂hk

∂uk
(xk, uk, wk) = −u∗k−B∗

kz
∗
k+1 for k = 0, 1, ..., N−1. Thus

the first assertion of Theorem 1.1 is valid.

If the solution map S has an upper Lipschitzian selection at (w, x, u),

then it is also a sufficient condition for w∗ ∈ ∂̂V (w) because of the second
assertion of Theorem 2.1. The proof of the theorem is complete. �

Let us give an illustrative example for Theorem 1.1.

Example 3.1. Consider the problem
f(x, u, w) = Σ2

k=0

(
(xk + uk − wk)

2 − wk

)
+ 1

1+x2
3
→ inf

xk+1 = xk + uk − wk, k = 0, 1, 2.

x(0) = 1.

Let w = (w0, w1, w2) = (0, 0, 0) and w∗ ∈ ∂̂V (w). Then one has w∗ =
(−1,−1,−1).

In fact, when w = (0, 0, 0) the problem becomes
f(x, u, w) = Σ2

k=0(xk + uk)
2 + 1

1+x2
3
→ min

xk+1 = g(xk, uk, k) := xk + uk, k = 0, 1, 2.

x0 = 1.

Put I(x, i) = min Σ2
k=i(xk + uk))

2 + 1
1+x2

3
, where{

xk+1 = g(xk, uk, k) = xk + uk, k = i, ..., 2.

xi = x.

According to Bellman equation, we have I(x, 3) = 1
1+x2 ,

I(x, 2) = min
u

[(x + u)2 + I(g(x, u, 2), 3)]

= min
u

[(x + u)2 +
1

1 + (x + u)2
]

= 1.

The optimal value I(x, 2) = 1 is obtained at u = −x. Hence

I(x, 1) = min
u

[(x + u)2 + I(g(x, u, 1), 2)]

= min
u

[(x + u)2 + 1] = 1 at u = −x.
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Finally, we get

I(x, 0) = min
u

[(x + u)2 + I(g(x, u, 0), 1)]

= min
u

[(x + u)2 + 1] = 1 at u = −x.

Since x0 = 1, we have u0 = −x0 = −1. Hence x1 = x0 + u0 = 0 and
u1 = −x1 = 0. Similarly, we have x2 = x1 + u1 = 0, u2 = −x2 = 0 and
x3 = x2 +u2 = 0. Thus the couple of x = (1, 0, 0, 0) and w = (−1, 0, 0) is the
unique solution of the problem corresponding to w = (0, 0, 0). We now have,
hk(xk, uk, wk) = (xk +uk−wk)

2−wk with k = 0, 1, 2, and h3(x3) = 1
1+x2

3
. By

computing, we get (∂h3

∂x3
)(x3) = 0, (∂hk

∂xk
)(xk, uk, wk) = 0, (∂hk

∂uk
)(xk, uk, wk) = 0

and ( ∂hk

∂wk
)(xk, uk, wk) = −1 for all k = 0, 1, 2. For this problem, one has

A0 = A1 = A2 = 1, B0 = B1 = B2 = 1 and T0 = T1 = T2 = −1. By
Corollary 1.1, there exist z∗1 , z

∗
2 and z∗3 such that

w∗
k = ( ∂hk

∂wk
)(xk, uk, wk) + T ∗

k z∗k+1 for k = 0, 1, 2.

(∂h0

∂x0
)(x0, u0, w0) = −A∗

0z
∗
1 , (∂h3

∂x3
)(x3) = z∗3 ,

(∂h1

∂x1
)(x1, u1, w1) = z∗1 − A∗

1z
∗
2

(∂h2

∂x2
)(x2, u2, w2) = z∗2 − A∗

2z
∗
3

(∂h0

∂u0
)(x0, u0, w0) = −B∗

0z
∗
1

(∂h1

∂u1
)(x1, u1, w1) = −B∗

1z
∗
2

(∂h2

∂u2
)(x2, u2, w2) = −B∗

2z
∗
3 .

Hence z∗1 = z∗1 = z∗3 = 0 and w∗
0 = w∗

1 = w∗
2 = −1. Thus ∂̂V (w) ⊆

{(−1,−1,−1)}. By computing we see that the couple of x = (1, w0, w1, w2)
and u = (w0 − 1, w1 − w0, w2 − w1) is the unique solution of the problem
corresponding to the parameter w = (w0, w1, w2). Thus the solution map
is Lipschitz continuous. By the second assertion of Theorem 1.1, we have
∂̂V (w) = {(−1,−1,−1)}.
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