LINEAR ORTHOGONALITY PRESERVERS OF HILBERT BUNDLES

CHI-WAI LEUNG ${ }^{\boxtimes}$, CHI-KEUNG NG and NGAI-CHING WONG

(Received 27 August 2009; accepted 14 September 2010)

Communicated by G. A. Willis

Abstract

A \mathbb{C}-linear map θ (not necessarily bounded) between two Hilbert C^{*}-modules is said to be 'orthogonality preserving' if $\langle\theta(x), \theta(y)\rangle=0$ whenever $\langle x, y\rangle=0$. We prove that if θ is an orthogonality preserving map from a full Hilbert $C_{0}(\Omega)$-module E into another Hilbert $C_{0}(\Omega)$-module F that satisfies a weaker notion of $C_{0}(\Omega)$-linearity (called 'localness'), then θ is bounded and there exists $\phi \in C_{b}(\Omega)_{+}$such that $\langle\theta(x), \theta(y)\rangle=\phi \cdot\langle x, y\rangle$ for all $x, y \in E$.

2010 Mathematics subject classification: primary 46L08; secondary 46M20, 46H40, 46E40.
Keywords and phrases: automatic continuity, orthogonality preserving maps, module homomorphisms, local maps, Hilbert C^{*}-modules, Hilbert bundles.

1. Introduction

It is common knowledge that the inner product of a Hilbert space determines both the norm and orthogonality; and conversely, the norm structure determines the inner product structure. It may be slightly less well known that the orthogonality structure of a Hilbert space also determines its norm structure. Indeed, if θ is a linear map between Hilbert spaces preserving orthogonality, then it is easy to see that θ is a scalar multiple of an isometry (see [5, 6]).

We are interested in the corresponding relations for Hilbert C^{*}-modules. Note that, in the case of a commutative C^{*}-algebra $C_{0}(\Omega)$, Hilbert $C_{0}(\Omega)$-modules are the same as Hilbert bundles, or equivalently, continuous fields of Hilbert spaces over Ω. By modifying the proof of [12, Theorem 6] (see also [9, 13, 16]), one may show that any surjective isometry between two continuous fields of Hilbert spaces with nonzero fibers over each point is given by a homeomorphism and a field of unitary operators. Thus, the norm structure (and linearity) determines the unitary structure in this situation.

[^0]Our primary concern is the question of whether the orthogonality structure of a Hilbert C^{*}-module determines its unitary structure. More precisely, let A be a C^{*}-algebra, and E and F be two Hilbert A-modules. If $\theta: E \rightarrow F$ is an A-module homomorphism, not necessarily bounded, which preserves orthogonality, that is, $\langle\theta(x), \theta(y)\rangle_{A}=0$ whenever $\langle x, y\rangle_{A}=0$, then we ask whether there is a central positive multiplier u in $M(A)$ such that

$$
\langle\theta(e), \theta(f)\rangle_{A}=u\langle e, f\rangle_{A} \quad \forall e, f \in E
$$

When $A=\mathbb{C}$, this reduces to the case of Hilbert spaces. Recently, Ilišević and Turnšek [10] gave a positive answer in the case where A is a standard C^{*}-algebra, that is, when $\mathcal{K}(H) \subseteq A \subseteq \mathcal{L}(H)$.

In this paper, we will give a positive answer when A is a commutative C^{*} algebra (actually, we prove a slightly stronger result that replaces A-linearity with the 'localness' property; see Definition 2.1). On the other hand, we will also consider bijective biorthogonality preserving maps between Hilbert C^{*}-modules over different commutative C^{*}-algebras. We show that if such a map also satisfies a certain localtype property (see Definition 3.12) but is not assumed to be bounded, then it is given by a homeomorphism (between the base spaces) and a 'continuous field of unitary operators'. We remark that in this case of Hilbert C^{*}-modules over different commutative C^{*}-algebras, one cannot define ' A-linearity', but has to consider the localness property. This is one of the reasons for considering local maps. We remark also that this case does not cover the case of Hilbert C^{*}-modules over the same commutative C^{*}-algebra, because we need to assume that the map is both bijective and biorthogonality preserving.

Note that if Ω is a locally compact Hausdorff space and H is a Hilbert space, then $C_{0}(\Omega, H)$ is a Hilbert $C_{0}(\Omega)$-module. As far as we know, even in this case our results are new, and the techniques in the proofs are nonstandard and nontrivial, compared to those in the literature $[1,4,8,11]$ on separating or zero-product preservers (although some statements look similar). In a forthcoming paper, the authors will study the case where the underlying C^{*}-algebra is not commutative.

2. Terminology and notation

Recall that a (right) Hilbert C^{*}-module E over a C^{*}-algebra A is a right A-module equipped with an A-valued inner product $\langle\cdot, \cdot\rangle: E \times E \rightarrow A$ such that the following conditions hold for all $x, y \in E$ and all $a \in A$:
(i) $\langle x, y a\rangle=\langle x, y\rangle a$;
(ii) $\langle x, y\rangle^{*}=\langle y, x\rangle$;
(iii) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ exactly when $x=0$.

Moreover, E is a Banach space equipped with the norm $\|x\|=\|\langle x, x\rangle\|^{1 / 2}$. We also call E a Hilbert A-module in this case. A complex linear map $\theta: E \rightarrow F$ between two Hilbert A-modules is called an A-module homomorphism if $\theta(x a)=\theta(x) a$
for all $a \in A$ and $x \in E$. See, for example, [15] or [20] for a general introduction to the theory of Hilbert C^{*}-modules. In this paper, we are interested in the case where the underlying C^{*}-algebra A is abelian, that is, the space $A=C_{0}(\Omega)$ of all continuous complex-valued functions vanishing at infinity on a locally compact Hausdorff space Ω.

Definition 2.1. Let A be a C^{*}-algebra. Suppose that E and F are Hilbert A modules. A \mathbb{C}-linear map $\theta: E \rightarrow F$ is said to be local if $\theta(e) a=0$ whenever $e a=0$ for any $e \in E$ and $a \in A$.

The idea of local linear maps is often found in research in analysis. For example, a theorem of Peetre [19] states that local linear maps of the space of smooth functions defined on a manifold modeled on \mathbb{R}^{n} are exactly the linear differential operators (see [18]). This was extended to the case of vector-valued differentiable functions defined on a finite-dimensional manifold by Kantrowitz and Neumann [14] and Araujo [3], and to the Banach $C^{1}[0,1]$-module setting by Alaminos et al. [2]. Note that every A-module homomorphism is local. Conversely, every bounded local map is an A-module homomorphism (see [17, Proposition A.1]). See Remark 3.4 below for more information.

Throughout this paper, Ω and Δ are two locally compact Hausdorff spaces, and Ω_{∞} is the one-point compactification of Ω. Moreover, E and F are a (right) Hilbert $C_{0}(\Omega)$-module and a (right) Hilbert $C_{0}(\Delta)$-module respectively, while $\theta: E \rightarrow F$ is a \mathbb{C}-linear map (not assumed to be bounded). We denote by $\mathcal{B}_{C_{0}(\Omega)}(E, F)$ the set of all bounded $C_{0}(\Omega)$-module homomorphisms from E into F. For any $\omega \in \Omega$, we let $\mathcal{N}_{\Omega}(\omega)$ be the set of all compact neighborhoods of ω in Ω. If $S \subseteq \Omega$, we denote by $\operatorname{Int}_{\Omega}(S)$ the interior of S in Ω. Moreover, when $U, V \subseteq \Omega$ and the closure of V is a compact subset of $\operatorname{Int}_{\Omega}(U)$, we denote by $\mathcal{U}_{\Omega}(V, U)$ the collection of all functions $\lambda \in C_{0}(\Omega)$ such that $0 \leq \lambda \leq 1, \lambda \equiv 1$ on V and λ vanishes outside U.

Note that any Hilbert $C_{0}(\Omega)$-module E may be regarded as a Hilbert $C\left(\Omega_{\infty}\right)$ module, and the results in [7] may be applied. In particular, E is the space of $C_{0^{-}}$ sections (that is, continuous sections that vanish at infinity) of an (F)-Hilbert bundle Ξ^{E} over Ω_{∞} (see [7, p. 49]).

We define the modulus function $|f|(\omega):=\|f(\omega)\|$ for all $f \in E$ and $\omega \in \Omega$. For any closed subset S of Ω_{∞} and $\omega \in \Omega_{\infty}$, we set

$$
K_{S}^{E}:=\{f \in E: f(\omega)=0 \text { for some } \omega \in S\} \quad \text { and } \quad I_{\omega}:=\bigcup_{V \in \mathcal{N}_{\Omega_{\infty}}(\omega)} K_{V}^{E}
$$

(for simplicity, we also denote $K_{\{\omega\}}^{E}$ by K_{ω}^{E}). Note that $K_{\infty}^{E}=E$ and the fiber Ξ_{ω}^{E} of Ξ^{E} at $\omega \in \Omega_{\infty}$ is E / K_{ω}^{E}. Furthermore, K_{S}^{E} is a Hilbert $K_{S}^{C_{0}(\Omega)}$-module and

$$
K_{S}^{E}=\overline{E \cdot K_{S}^{C_{0}(\Omega)}}
$$

We also define

$$
\Delta_{\theta}:=\left\{v \in \Delta: \theta(E) \nsubseteq K_{v}^{F}\right\}=\{v \in \Delta: \theta(e)(v) \neq 0 \text { for some } e \in E\}
$$

Then Δ_{θ} is an open subset of Δ and we put

$$
\Omega_{E}:=\left\{\omega \in \Omega: \Xi_{\omega}^{E} \neq(0)\right\} .
$$

Let $\Omega_{0} \subseteq \Omega$ be an open set. As in [7, p. 10], we denote by $\left.\Xi^{E}\right|_{\Omega_{0}}$ the restriction of Ξ^{E} to Ω_{0} and by $E_{\Omega_{0}}$ the set of C_{0}-sections on $\left.\Xi^{E}\right|_{\Omega_{0}}$. One may make the following identifications:

$$
C_{0}\left(\Omega_{0}\right)=K_{\Omega \backslash \Omega_{0}}^{C_{0}(\Omega)} \quad \text { and } \quad E_{\Omega_{0}}=K_{\Omega \backslash \Omega_{0}}^{E}
$$

3. Orthogonality preserving maps between Hilbert $C_{0}(\Omega)$-modules

We first recall two technical lemmas from [17, Lemmas 3.1 and 3.3, and Theorem 3.7] (see also [17, Remark 3.4]), which summarize, unify, and generalize techniques used sporadically in the literature [4, 8, 11].

Lemma 3.1. If $\sigma: \Delta_{\theta} \rightarrow \Omega_{\infty}$ is a map satisfying $\theta\left(I_{\sigma(\nu)}^{E}\right) \subseteq K_{v}^{F}$ for all $v \in \Delta_{\theta}$, then σ is continuous.

Lemma 3.2. Let $\sigma: \Delta \rightarrow \Omega$ be a map (not necessarily continuous) with the property that $\theta\left(I_{\sigma(\nu)}^{E}\right) \subseteq K_{v}^{F}$ for every $v \in \Delta$.
(a) If $\mathfrak{U}_{\theta}:=\left\{v \in \Delta: \sup _{\|e\| \leq 1}\|\theta(e)(v)\|=\infty\right\}$, then $\sigma\left(\mathfrak{U}_{\theta}\right)$ is a finite set.
(b) If $\mathfrak{N}_{\theta, \sigma}:=\left\{v \in \Delta: \theta\left(K_{\sigma(\nu)}^{E}\right) \nsubseteq K_{v}^{F}\right\}$, then $\mathfrak{N}_{\theta, \sigma} \subseteq \mathfrak{U}_{\theta}$ and $\sigma\left(\mathfrak{N}_{\theta, \sigma}\right)$ consists of nonisolated points in Ω.
(c) If σ is injective and sends isolated points in Δ to isolated points in Ω, then $\mathfrak{N}_{\theta, \sigma}=\emptyset$ and there exist a finite set T consisting of isolated points of Δ, a bounded linear map $\theta_{0}: K_{\sigma(T)}^{E} \rightarrow K_{T}^{F}$ as well as linear maps $\theta_{\nu}: \Xi_{\sigma(\nu)}^{E} \rightarrow \Xi_{v}^{F}$ for all $\nu \in T$, such that $E=K_{\sigma(T)}^{E} \oplus \bigoplus_{\nu \in T} \Xi_{\sigma(\nu)}^{E}$,

$$
F=K_{T}^{F} \oplus \bigoplus_{\nu \in T} \Xi_{v}^{F} \quad \text { and } \quad \theta=\theta_{0} \oplus \bigoplus_{\nu \in T} \theta_{\nu}
$$

For any $v \in \Delta \backslash \mathfrak{N}_{\theta, \sigma}$, one may define $\theta_{\nu}: \Xi_{\sigma(\nu)}^{E} \rightarrow \Xi_{\nu}^{F}$ by

$$
\begin{equation*}
\theta_{v}\left(e+K_{\sigma(\nu)}^{E}\right)=\theta(e)+K_{v}^{F} \quad \forall e \in E, \tag{3.1}
\end{equation*}
$$

or equivalently, $\theta_{v}(e(\sigma(v)))=(\theta(e))(v)$ for all $e \in E$.
Lemma 3.3. Let σ and \mathfrak{U}_{θ} be as in Lemma 3.2. Suppose, in addition, that σ is injective and θ is orthogonality preserving. Then there exists a bounded function $\psi: \Delta \backslash \mathfrak{U}_{\theta} \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
\langle\theta(e), \theta(g)\rangle(v)=\psi(v)^{2}\langle e, g\rangle(\sigma(v)) \quad \forall e, g \in E, \forall v \in \Delta \backslash \mathfrak{U}_{\theta} . \tag{3.2}
\end{equation*}
$$

Moreover, for each $v \in \Delta_{\theta}$, there is an isometry $\iota_{\nu}: \Xi_{\sigma(v)}^{E} \rightarrow \Xi_{v}^{F}$ such that

$$
\theta(e)(v)=\psi(v) \iota_{v}(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta_{\theta} \backslash \mathfrak{U}_{\theta} .
$$

Proof. Fix any $\nu \in \Delta_{\theta} \backslash \mathfrak{U}_{\theta}$. By Lemma 3.2(b), the map θ_{ν}, as in (3.1), is well defined. Suppose that η_{1} and η_{2} are orthogonal elements in $\Xi_{\sigma(\nu)}^{E}$ and $\eta_{1} \neq 0$ (this is possible because $\Delta_{\theta} \backslash \mathfrak{N}_{\theta, \sigma} \subseteq \sigma^{-1}\left(\Omega_{E}\right)$), and that $g_{1}, g_{2} \in E$ and $g_{i}(\sigma(v))=\eta_{i}$ when $i=1$, 2. If $V \in \mathcal{N}_{\Omega}(\sigma(\nu))$ and g_{1} does not vanish on V, then by replacing g_{2} with

$$
\left(g_{2}-\frac{\left\langle g_{2}, g_{1}\right\rangle}{\left|g_{1}\right|^{2}} g_{1}\right) \lambda
$$

where $\lambda \in \mathcal{U}_{\Omega}(\{\sigma(\nu)\}, V)$, we see that there are orthogonal elements $e_{1}, e_{2} \in E$ such that $e_{i}(\sigma(\nu))=\eta_{i}$ when $i=1$, 2. Hence θ_{ν} is nonzero, because $\nu \in \Delta_{\theta}$, and is an orthogonality preserving \mathbb{C}-linear map between Hilbert spaces. Consequently, there exist an isometry $\iota_{\nu}: \Xi_{\sigma(\nu)}^{E} \rightarrow \Xi_{v}^{F}$ and a unique scalar $\psi(\nu)>0$ such that $\theta_{\nu}=\psi(v) \iota_{\nu}$. For any $v \in \Delta \backslash \Delta_{\theta}$, we set $\psi(v)=0$. Then clearly (3.2) holds. Next, we show that ψ is a bounded function on $\Delta \backslash \mathfrak{U}_{\theta}$. Suppose that this is not the case. Then there exist distinct points $v_{n} \in \Delta_{\theta} \backslash \mathfrak{U}_{\theta}$ such that $\psi\left(v_{n}\right)>n^{3}$. If $e_{n} \in E$ such that $\left\|e_{n}\right\|=1$ and its modulus function satisfies

$$
\left|e_{n}\right|\left(\sigma\left(v_{n}\right)\right)=\sqrt{\left\langle e_{n}, e_{n}\right\rangle}\left(\sigma\left(v_{n}\right)\right) \geq(n-1) / n
$$

(note that $v_{n} \in \sigma^{-1}\left(\Omega_{E}\right)$), then in light of (3.2),

$$
\left|\theta\left(e_{n}\right)\right|\left(v_{n}\right)=\psi\left(v_{n}\right)\left|e_{n}\right|\left(\sigma\left(v_{n}\right)\right)>n^{2}(n-1) .
$$

As $\left\{\sigma\left(v_{n}\right)\right\}$ is a set of distinct points (note that σ is injective), by passing to a subsequence if necessary, we may assume that there are $U_{n} \in \mathcal{N}_{\Omega}\left(\sigma\left(v_{n}\right)\right)$ such that $U_{n} \cap U_{m}=\emptyset$ when $m \neq n$. Now pick any $V_{n} \in \mathcal{N}_{\Omega}\left(\sigma\left(v_{n}\right)\right)$ such that $V_{n} \subseteq \operatorname{Int}_{\Omega}\left(U_{n}\right)$ and choose a function $\lambda_{n} \in \mathcal{U}_{\Omega}\left(V_{n}, U_{n}\right)$ for all $n \in \mathbb{N}$. Define $e:=\sum_{k=1}^{\infty} e_{k} \lambda_{k}^{2} / k^{2} \in E$. As $n^{2} e-e_{n} \lambda_{n}^{2} \in K_{U_{n}}^{E}$ and $e_{n}-e_{n} \lambda_{n}^{2}=e_{n}\left(1-\lambda_{n}^{2}\right) \in K_{V_{n}}^{E}$ for all $n \in \mathbb{N}$,

$$
\|\theta(e)\| \geq\left\|\theta(e)\left(v_{n}\right)\right\|=\frac{\left\|\theta\left(e_{n} \lambda_{n}^{2}\right)\left(v_{n}\right)\right\|}{n^{2}}=\frac{\left\|\theta\left(e_{n}\right)\left(v_{n}\right)\right\|}{n^{2}}>n-1,
$$

by the relation between θ and σ, which is a contradiction.

3.1. Hilbert bundles over the same base space.

Remark 3.4. For any $e \in E$, we define

$$
\operatorname{supp}_{\Omega} e:=\overline{\{\omega \in \Omega: e(\omega) \neq 0\}}
$$

It is not hard to check that the following statements are equivalent (and this tells us that local maps are the same as support shrinking maps [8]):
(i) θ is local (see Definition 2.1);
(ii) $\quad \theta\left(K_{V}^{E}\right) \subseteq K_{V}^{F}$ for all nonempty open set V;
(iii) $\operatorname{supp}_{\Omega} \theta(e) \subseteq \operatorname{supp}_{\Omega} e$ for all $e \in E$;
(iv) $\operatorname{supp}_{\Omega} \theta(e) \lambda \subseteq \operatorname{supp}_{\Omega} e$ for all $e \in E$ and $\lambda \in C_{0}(\Omega)$.

THEOREM 3.5. Let Ω be a locally compact Hausdorff space, and let E and F be two Hilbert $C_{0}(\Omega)$-modules. Suppose that $\theta: E \rightarrow F$ is an orthogonality preserving local \mathbb{C}-linear map. The following assertions hold.
(a) $\theta \in \mathcal{B}_{C_{0}(\Omega)}(E, F)$.
(b) There is a bounded nonnegative function φ on Ω, continuous on Ω_{E}, such that

$$
\langle\theta(e), \theta(g)\rangle=\varphi \cdot\langle e, g\rangle \quad \forall e, g \in E .
$$

(c) There exist a strictly positive element $\psi_{0} \in C_{b}\left(\Omega_{\theta}\right)_{+}$and $J \in \mathcal{B}_{C_{0}\left(\Omega_{\theta}\right)}\left(E_{\Omega_{\theta}}, F_{\Omega_{\theta}}\right)$ such that the fiber map J_{ω} is an isometry for all $\omega \in \Omega_{\theta}$ and

$$
\theta(e)(\omega)=\psi_{0}(\omega) J(e)(\omega) \quad \forall e \in E, \forall \omega \in \Omega_{\theta}
$$

Proof. Note that the conclusions of Lemmas 3.2 and 3.3 hold when $\Omega=\Delta$ and $\sigma=\operatorname{Int}_{\Omega}$.

We prove (a). By Remark 3.4 and Lemma 3.2(c), θ is a $C_{0}(\Omega)$-module homomorphism. Further, as θ_{v} (as in Lemma 3.2(c)) is an orthogonality preserving, hence bounded, linear map between Hilbert spaces for all $v \in T$ (where T is as in Lemma 3.2(c) and $\sigma=\operatorname{Int} \Omega$), we know from Lemma 3.2(c) that θ is bounded (note that T is finite).

Now we consider (b). By part (a), $\mathfrak{U}_{\theta}=\emptyset$. Thus, Lemma 3.3 tells us that there exists a bounded nonnegative function ψ on Ω such that $\langle\theta(e), \theta(f)\rangle=|\psi|^{2} \cdot\langle e, f\rangle$. Let $\omega \in \Omega_{E}$ and pick any $e \in E$ for which there exists $U_{\omega} \in \mathcal{N}_{\Omega}(\omega)$ such that $e(v) \neq 0$ for all $v \in U_{\omega}$. Then $\psi(\omega)=|\theta(e)|(\omega) /|e|(\omega)$ for all $\omega \in U_{\omega}$. Hence ψ is continuous on Ω_{E}, and $\varphi=\psi^{2}$ is the required function.

It remains to prove (c). Note that $\Omega_{\theta} \subseteq \Omega_{E}$, by part (a). Since $\varphi(\omega)>0$ for all $\omega \in$ Ω_{θ}, we know from part (b) that $\psi=\varphi^{1 / 2}$ is a strictly positive element ψ_{0} in $C_{b}\left(\Omega_{\theta}\right)_{+}$. The equivalence in [7, (2.2)] (consider E and F as Hilbert $C\left(\Omega_{\infty}\right)$-bundles) tells us that the restriction of θ induces a bounded Banach bundle map, again denoted by θ, from $\left.\Xi^{E}\right|_{\Omega_{\theta}}$ into $\left.\Xi^{F}\right|_{\Omega_{\theta}}$. For each $\left.\eta \in \Xi^{E}\right|_{\Omega_{\theta}}$, we define $J(\eta):=\psi_{0}(\pi(\eta))^{-1} \theta(\eta)$, where $\pi: \Xi^{E} \rightarrow \Omega$ is the canonical projection. Then $J:\left.\left.\Xi^{E}\right|_{\Omega_{\theta}} \rightarrow \Xi^{F}\right|_{\Omega_{\theta}}$ is a Banach bundle map, as $\eta \mapsto \psi_{0}(\pi(\eta))^{-1}$ is continuous, which is an isometry on each fiber (hence J is bounded) such that $\theta(\eta)=\psi(\pi(\eta)) J(\eta)$. This map J induces a map, again denoted by J, in $\mathcal{B}_{C_{0}\left(\Omega_{\theta}\right)}\left(E_{\Omega_{\theta}}, F_{\Omega_{\theta}}\right)$ that satisfies the requirement of part (c).

It is natural to ask if one can find $\varphi \in C_{b}(\Omega)$ such that the conclusion of Theorem 3.5(b) holds. Unfortunately, the following example tells us that this is not the case in general.
EXAMPLE 3.6. Let $\Omega=\mathbb{R}_{\infty}$, the one-point compactification of the real line \mathbb{R}. Let E and F be the Hilbert $C(\Omega)$-module $C_{0}(\mathbb{R})$, and define $\theta(f)(t)=f(t) \cos t$ for all $f \in E$ and $t \in \mathbb{R}$. Then $\Omega \backslash \Omega_{E}=\{\infty\}$ and $\varphi(t)=\cos t$ for all $t \in \mathbb{R}=\Omega_{E}$. Thus φ does not extend to a continuous function on Ω.

We can now obtain the following commutative analog of [10, Proposition 2.3]. This, together with Corollary 3.11, asserts that the orthogonality structure of a Hilbert
bundle essentially determines its unitary structure, as we claimed in the introduction. Note also that a large portion of Lemma 3.2 was used to deal with the possibility of $\theta\left(K_{\sigma(\nu)}^{E}\right) \nsubseteq K_{v}^{F}$ (this situation does not arise for $C_{0}(\Omega)$-module homomorphism), and this corollary actually has a much easier proof.

Corollary 3.7. Let Ω be a locally compact Hausdorff space, and E and F be Hilbert $C_{0}(\Omega)$-modules. Suppose that $\theta: E \rightarrow F$ is a $C_{0}(\Omega)$-module homomorphism that preserves orthogonality. Then θ is bounded and there exists a bounded nonnegative function φ on Ω that is continuous on Ω_{E} and satisfies $\langle\theta(e), \theta(f)\rangle=$ $\varphi \cdot\langle e, f\rangle$ for all $e, f \in E$.

Recall that a Hilbert $C_{0}(\Omega)$-module E is full if the \mathbb{C}-linear span $\langle E, E\rangle$ of the set

$$
\{\langle e, f\rangle: e, f \in E\}
$$

is dense in $C_{0}(\Omega)$.
REMARK 3.8. A Hilbert $C_{0}(\Omega)$-module E is full if and only if $E \nsubseteq K_{\omega}^{E}$ for all $\omega \in \Omega$ (or equivalently, $\Omega_{E}=\Omega$). In fact, if $E \subseteq K_{\omega}^{E}$, then $f(\omega)=0$ for all $f \in\langle E, E\rangle$ and E is not full. Conversely, if E is not full, then there exists $\omega \in \Omega$ such that $f(\omega)=0$ for all $f \in\langle E, E\rangle$, because the closure of $\langle E, E\rangle$ is an ideal of $C_{0}(\Omega)$, and $E \subseteq K_{\omega}^{E}$.

REMARK 3.9. If E is full, then by the previous remark, the function φ in Theorem 3.5(b) (and Corollary 3.7) is an element of $C_{b}(\Omega)$. However, there is no guarantee that this function is strictly positive.
Remark 3.10. Suppose that F is full and θ is a surjective orthogonality preserving local \mathbb{C}-linear map. If there exists $\omega \in \Omega \backslash \Omega_{\theta}$, then $F=\theta(E) \subseteq K_{\omega}^{F}$, which contradicts the fullness of F (see Remark 3.8). Consequently, $\Omega_{\theta}=\Omega$. As $\theta \in$ $\mathcal{B}_{C_{0}(\Omega)}(E, F)$ by Theorem 3.5(a), we see that $\Omega=\Omega_{\theta} \subseteq \Omega_{E}$ and E is full.

Corollary 3.11. Let Ω be a locally compact Hausdorff space, and let E and F be two Hilbert $C_{0}(\Omega)$-modules. Suppose that F is full and $\theta: E \rightarrow F$ is an orthogonality preserving surjective local \mathbb{C}-linear map. Then $\theta \in \mathcal{B}_{C_{0}(\Omega)}(E, F)$. Moreover, there exist a strictly positive element $\psi \in C_{b}(\Omega)_{+}$and a unitary map $U \in \mathcal{B}_{C_{0}(\Omega)}(E, F)$ such that $\theta=\psi \cdot U$.

Proof. Remark 3.10 tells us that $\Omega_{\theta}=\Omega$. By the surjectivity of θ, the bounded Banach bundle map J in Theorem 3.5 is unitary on each fiber. Therefore, the element $U \in \mathcal{B}_{C_{0}(\Omega)}(E, F)$ corresponding to J, as in [7, (2.2)], is unitary.

3.2. Hilbert bundles over different base spaces.

Definition 3.12. The map θ is said to be quasilocal if it is bijective and, for all $e \in E$ and $\lambda \in C_{0}(\Delta)$,

$$
\begin{equation*}
\operatorname{supp}_{\Omega} \theta^{-1}(\theta(e) \lambda) \subseteq \operatorname{supp}_{\Omega} e \tag{3.3}
\end{equation*}
$$

Note that if $\Delta=\Omega$ and θ is both local and bijective (hence θ^{-1} is also local), then θ is quasilocal by Remark 3.4.

Lemma 3.13. Suppose that θ is bijective and quasilocal and that θ and θ^{-1} both preserve orthogonality. Then $|\theta(e) \| \theta(g)|=0$ if $e, g \in E$ and $\operatorname{supp}_{\Omega} e \cap \operatorname{supp}_{\Omega} g=\emptyset$.
Proof. Suppose, on the contrary, that there exist $e_{1}, e_{2} \in E$ and $\nu \in \Delta$ such that $\operatorname{supp}_{\Omega} e_{1} \cap \operatorname{supp}_{\Omega} e_{2}=\emptyset$ but $\left\|\theta\left(e_{1}\right)(\nu)\right\|\left\|\theta\left(e_{2}\right)(v)\right\| \neq 0$. As θ preserves orthogonality, we may assume that $\theta\left(e_{1}\right)(v)$ and $\theta\left(e_{2}\right)(v)$ are orthogonal unit vectors in Ξ_{v}^{F}. Take $U, W \in \mathcal{N}_{\Delta}(v)$ such that $W \subseteq \operatorname{Int}_{\Delta}(U)$ and $\left\|\theta\left(e_{i}\right)(\mu)\right\|>1 / 2$ for all $\mu \in U$. Pick any $\lambda \in \mathcal{U}_{\Delta}(W ; U)$, and define $h_{i} \in F \backslash\{0\}$ (when $i=1$, 2) by

$$
h_{i}(\mu):= \begin{cases}\theta\left(e_{i}\right)(\mu) \frac{\lambda(\mu)}{\left|\theta\left(e_{i}\right)\right|(\mu)} & \text { if } \mu \in \operatorname{Int}_{\Delta}(U) \\ 0 & \text { if } \mu \notin \operatorname{Int}_{\Delta}(U)\end{cases}
$$

and set $e_{i}^{\prime}:=\theta^{-1}\left(h_{i}\right)$. The orthogonality of h_{1} and h_{2} (recall that e_{1} and e_{2} are orthogonal), together with that of $h_{1}+h_{2}$ and $h_{1}-h_{2}$ (as $\left|h_{1}\right|=\lambda=\left|h_{2}\right|$, ensures the orthogonality of e_{1}^{\prime} and e_{2}^{\prime}, as well as that of $e_{1}^{\prime}+e_{2}^{\prime}$ and $e_{1}^{\prime}-e_{2}^{\prime}$. It follows that $\left|e_{1}^{\prime}\right|=\left|e_{2}^{\prime}\right| \neq 0$, which contradicts the fact that $\left|e_{1}^{\prime}\right|\left|e_{2}^{\prime}\right|=0$, as θ is quasilocal.

THEOREM 3.14. Let Ω and Δ be locally compact Hausdorff spaces. Suppose that E is a full Hilbert $C_{0}(\Omega)$-module and F is a full Hilbert $C_{0}(\Delta)$-module. If $\theta: E \rightarrow F$ is a bijective \mathbb{C}-linear map such that both θ and θ^{-1} are quasilocal and orthogonality preserving, then θ is bounded and

$$
\begin{equation*}
\theta(e)(v)=\psi(v) J_{v}(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta, \tag{3.4}
\end{equation*}
$$

where $\sigma: \Delta \rightarrow \Omega$ is a homeomorphism, ψ is a strictly positive element of $C_{b}(\Delta)_{+}$, and J_{v} is a unitary operator from $\Xi_{\sigma(v)}^{E}$ onto Ξ_{ν}^{F} such that the map $v \mapsto J_{v}(f(\sigma(v)))$ is continuous for all fixed $f \in E$.
Proof. We consider E as a Hilbert $C\left(\Omega_{\infty}\right)$-module. For each $v \in \Delta$, let

$$
S_{\nu}:=\left\{\omega \in \Omega_{\infty}: \theta\left(K_{\Omega_{\infty} \backslash W}^{E}\right) \nsubseteq K_{v}^{F} \forall W \in \mathcal{N}_{\Omega_{\infty}}(\omega)\right\}
$$

We first show that S_{v} is a singleton. Indeed, assume that $S_{v}=\emptyset$. Then for all $\omega \in \Omega_{\infty}$, there is $W_{\omega} \in \mathcal{N}_{\Omega_{\infty}}(\omega)$ such that $\theta\left(K_{\Omega_{\infty} \backslash W_{\omega}}^{E}\right) \subseteq K_{\nu}^{F}$. Consider $\omega_{1}, \ldots, \omega_{n} \in \Omega_{\infty}$ such that

$$
\bigcup_{k=1}^{n} \operatorname{Int}_{\Omega_{\infty}}\left(W_{\omega_{k}}\right)=\Omega_{\infty}
$$

and take a partition of unity $\left\{\varphi_{k}\right\}_{k=1}^{n}$ that is subordinate to $\left\{\operatorname{Int}_{\Omega_{\infty}}\left(W_{\omega_{k}}\right)\right\}_{k=1}^{n}$. Then $e \varphi_{k} \in K_{\Omega_{\infty} \backslash W_{\omega_{k}}}^{E}$ for all $e \in E$, and so $\theta(e) \in K_{v}^{F}$. As θ is surjective, this shows that $F=K_{v}^{F}$, and contradicts the fullness of F (see Remark 3.8). Now, assume that there are distinct elements $\omega_{1}, \omega_{2} \in S_{v}$. Take $V_{1} \in \mathcal{N}_{\Omega_{\infty}}\left(\omega_{1}\right)$ and $V_{2} \in \mathcal{N}_{\Omega_{\infty}}\left(\omega_{2}\right)$ such that $V_{1} \cap V_{2}=\emptyset$. By the definition of S_{v}, there exist $e_{1}, e_{2} \in E$ such that $\operatorname{supp}_{\Omega} e_{i} \subseteq V_{i} \backslash\{\infty\}$ and $\theta\left(e_{i}\right)(\nu) \neq 0$ when $i=1$, 2, which contradicts Lemma 3.13.

Thus, there is a unique element $\sigma(v) \in \Omega_{\infty}$ such that $S_{v}=\{\sigma(v)\}$. Next, we claim that

$$
\begin{equation*}
\theta\left(I_{\sigma(v)}^{E}\right) \subseteq I_{v}^{F} \quad \forall v \in \Delta \tag{3.5}
\end{equation*}
$$

Consider any $V \in \mathcal{N}_{\Omega_{\infty}}(\sigma(\nu))$ and $e \in K_{V}^{E}$. Pick $U \in \mathcal{N}_{\Omega_{\infty}}(\sigma(\nu))$ such that $U \subseteq$ $\operatorname{Int}_{\Omega_{\infty}}(V)$. By the definition of σ, there exists $g \in K_{\Omega_{\infty} \backslash U}^{E}$ such that $\theta(g)(v) \neq 0$. Hence, there is $W \in \mathcal{N}_{\Delta}(\nu)$ such that $\theta(g)(\mu) \neq 0$ for all $\mu \in W$, and Lemma 3.13 implies that $\theta(e) \in K_{W}^{F}$, as claimed. If there exists $v \in \Delta \backslash \Delta_{\theta}$, then $f(v)=0$ for all $f \in F$, because θ is surjective, which contradicts the fullness of F. Thus, $\Delta_{\theta}=\Delta$ and $\sigma: \Delta \rightarrow \Omega_{\infty}$ is continuous, by Lemma 3.1. As θ^{-1} is also quasilocal and orthogonality preserving, a similar argument to the above gives a continuous map $\tau: \Omega \rightarrow \Delta_{\infty}$ satisfying $\theta^{-1}\left(I_{\tau(\omega)}^{F}\right) \subseteq I_{\omega}^{E}$ for all $\omega \in \Omega$. Now, the argument of [17, Theorem 5.3] tells us that σ is a homeomorphism from Δ to Ω such that

$$
\theta(e \cdot \varphi)=\theta(e) \cdot \varphi \circ \sigma \quad \forall e \in E, \forall \varphi \in C_{0}(\Omega)
$$

and by Lemma 3.2(c), there exists a finite set T consisting of isolated points of Δ such that θ restricts to a bounded map from $K_{\sigma(T)}^{E}$ to K_{T}^{F}. Since any $v \in T$ is an isolated point, θ induces an orthogonality preserving, hence bounded, map θ_{ν} from the Hilbert space $\Xi_{\sigma(\nu)}^{E}$ onto the Hilbert space Ξ_{v}^{F}. This shows that θ is bounded, by Lemma 3.2(c) and the fact that T is finite. By Lemma 3.3, there is a surjective isometry $J_{v}: \Xi_{\sigma(\nu)}^{E} \rightarrow \Xi_{v}^{F}$ such that

$$
\theta(e)(v)=\psi(v) J_{v}(e(\sigma(v))) \quad \forall e \in E, \forall v \in \Delta .
$$

Now the fullness of E implies that $\psi(\nu)>0$ for all $\nu \in \Delta$, and the map $\nu \mapsto$ $\theta(e)(v) / \psi(v)$ is evidently continuous.

The following example shows the necessity of the assumption in Theorem 3.14 that θ^{-1} preserves orthogonality.

EXAmple 3.15. Let Ω be a nonempty locally compact Hausdorff space, Ω_{2} be the topological disjoint sum of two copies of Ω, and $j_{1}, j_{2}: \Omega \rightarrow \Omega_{2}$ be the embeddings into the first and the second copies of Ω in Ω_{2}, respectively. Let H be a nonzero Hilbert space, and let H_{2} be the Hilbert space direct sum of two copies of H. Then the $\operatorname{map} \theta: C_{0}\left(\Omega_{2}, H\right) \rightarrow C_{0}\left(\Omega, H_{2}\right)$, defined by

$$
\theta(f)(\omega)=\left(f\left(j_{1}(\omega)\right), f\left(j_{2}(\omega)\right)\right),
$$

is a bijective \mathbb{C}-linear map preserving orthogonality satisfying condition (3.3). However, θ is not of the expected form. Note that θ^{-1} does not preserve orthogonality.

References

[1] Y. A. Abramovich, E. L. Arenson and A. K. Kitover, Banach C(K)-Modules and Operators Preserving Disjointness, Pitman Research Notes in Mathematics, 277 (John Wiley \& Sons, Inc., New York, 1992).
[2] J. Alaminos, M. Brešar, M. Černe, J. Extremera and A. R. Villena, 'Zero product preserving maps on $C^{1}[0,1]$ ', J. Math. Anal. Appl. 347 (2008), 472-481.
[3] J. Araujo, 'Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity', Adv. Math. 187 (2004), 488-520.
[4] J. Araujo and K. Jarosz, 'Automatic continuity of biseparating maps', Studia Math. 155 (2003), 231-239.
[5] A. Blanco and A. Turnšek, 'On maps that preserve orthogonality in normed spaces', Proc. R. Soc. Edinburgh A 136 (2006), 709-716.
[6] J. Chmieliński, 'Linear mappings approximately preserving orthogonality', J. Math. Anal. Appl. 304 (2005), 158-169.
[7] M. J. Dupré and R. M. Gillette, Banach Bundles, Banach Modules and Automorphisms of C*Algebras, Pitman Research Notes in Mathematics, 92 (John Wiley \& Sons, Inc., New York, 1983).
[8] H. L. Gau, J. S. Jeang and N. C. Wong, 'Biseparating linear maps between continuous vectorvalued function spaces', J. Aust. Math. Soc. (Series A) 74 (2003), 101-111.
[9] M. H. Hsu and N. C. Wong, 'Isometric embeddings of Banach bundles', Taiwanese J. Math., to appear.
[10] D. Ilišević and A. Turnšek, 'Approximately orthogonality preserving mappings on C^{*}-modules', J. Math. Anal. Appl. 341 (2008), 298-308.
[11] K. Jarosz, 'Automatic continuity of separating linear isomorphisms', Canad. Math. Bull. 33 (1990), 139-144.
[12] J. S. Jeang and N. C. Wong, 'On the Banach-Stone problem', Studia Math. 155 (2003), 95-105.
[13] M. Jerison, 'The space of bounded maps into a Banach space', Ann. of Math. (2) 52 (1950), 309-327.
[14] R. Kantrowitz and M. M. Neumann, 'Disjointness preserving and local operators on algebras of differentiable functions', Glasg. Math. J. 43 (2001), 295-309.
[15] E. C. Lance, Hilbert C^{*}-Modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series, 210 (Cambridge University Press, Cambridge, 1995).
[16] K. S. Lau, 'A representation theorem for isometries of $C(X, E)$ ', Pacific J. Math. 60 (1975), 229-233.
[17] C. W. Leung, C. K. Ng and N. C. Wong, 'Automatic continuity and $C_{0}(\Omega)$-linearity of linear maps between $C_{0}(\Omega)$-modules', J. Operator Theory, to appear.
[18] R. Narasimhan, Analysis on Real and Complex Manifolds, Advanced Studies in Pure Mathematics, 1 (North-Holland, Amsterdam, 1968).
[19] J. Peetre, 'Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels", Math. Scand. 8 (1960), 116-120.
[20] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C^{*}-Algebras, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).

> CHI-WAI LEUNG, Department of Mathematics, The Chinese University of Hong Kong, Hong Kong e-mail: cwleung@math.cuhk.edu.hk

CHI-KEUNG NG, Chern Institute of Mathematics and LPMC,
Nankai University, Tianjin 300071, PR China
e-mail: ckng@nankai.edu.cn

NGAI-CHING WONG, Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
e-mail: wong@math.nsysu.edu.tw

[^0]: The authors were supported by a Hong Kong RGC Research Grant (2160255), the National Natural Science Foundation of China (10771106), and a Taiwan NSC grant (NSC96-2115-M-110-004-MY3).
 (C) 2010 Australian Mathematical Publishing Association Inc. 1446-7887/2010 \$16.00

