ATTRACTIVE POINTS AND HALPERN'S TYPE STRONG CONVERGENCE THEOREMS IN HILBERT SPACES

WATARU TAKAHASHI, NGAI-CHING WONG, AND JEN-CHIH YAO

ABSTRACT. In this paper, using the concept of attractive points of a nonlinear mapping, we obtain a strong convergence theorem of Halpern's type [6] for a wide class of nonlinear mappings which contains nonexpansive mappings, non-spreading mappings and hybrid mappings in a Hilbert space. Using this result, we obtain well-known and new strong convergence theorems of Halpern's typ in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty subset of H. Let \mathbb{N} and \mathbb{R} be the sets of positive integers and real numbers, respectively. A mapping $T: C \to H$ is called *generalized hybrid* [13] if there exist $\alpha, \beta \in \mathbb{R}$ such that

(1.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. We call such a mapping an (α, β) -generalized hybrid mapping. The class of generalized hybrid mappings covers many well-known mappings. For example, a (1, 0)-generalized hybrid mapping T is nonexpansive, i.e.,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

It is nonspreading [14, 15] for $\alpha = 2$ and $\beta = 1$, i.e.,

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

Furthermore, it is hybrid [22] for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$, i.e.,

$$3||Tx - Ty||^2 \le ||x - y||^2 + ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

We denote by F(T) the set of fixed points of T. In 1992, Wittmann [27] proved the following strong convergence theorem of Halpern's type [6] in a Hilbert space; see also [20].

Theorem 1.1. Let C be a nonempty, closed and convex subset of H and let T : $C \to C$ be a nonexpansive mapping with $F(T) \neq \emptyset$. For any $x_1 = x \in C$, define a sequence $\{x_n\}$ in C by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n, \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\} \subset [0,1]$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad \sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty.$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 47H10,\ 47H05,\ 47H09.$

 $Key\ words\ and\ phrases.$ Attractive point, fixed point, generalized hybrid mapping, Halpern's type iteration, nonexpansive mapping.

Then $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is the metric projection of H onto F(T).

Kurokawa and Takahashi [16] also proved the following strong convergence theorem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [7] for generalized hybrid mappings.

Theorem 1.2. Let C be a nonempty, closed and convex subset of a Hilbert space H. Let T be a nonspreading mapping of C into itself. Let $u \in C$ and define two sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n u + (1 - \alpha_n) z_n \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all $n = 1, 2, ..., where \{\alpha_n\} \subset (0, 1), \lim_{n \to \infty} \alpha_n = 0 \text{ and } \sum_{n=1}^{\infty} \alpha_n = \infty$. If F(T) is nonempty, then $\{x_n\}$ and $\{z_n\}$ converge strongly to Pu, where P is the metric projection of H onto F(T).

We do not know whether a strnog convergence theorem of Halpern's type (Theorem 1.1) for nonspreading mappings holds or not; see [16] and [7]. Very recently, Takahashi and Takeuchi [23] introduced the concept of *attractive points* of a nonlinear mapping in a Hilbert space and they proved a mean convergence theorem of Baillon's type [3] without convexity for generalized hybrid mappings. Akashi and Takahash [1] also proved a strong convergence theorem of Halpern's type for nonexpansive mappings on star-shaped sets in a Hilbert space. However, they used essentially the properties of nonexpansiveness in the proof.

In this paper, motivated by [27], [16], [7], [23] and [1], we obtain a strong convergence theorem of Halpern's type for finding attractive points of generalized hybrid mappings in a Hilbert space. Using this result, we obtain well-known and new strong convergence theorems of Halpern's type in a Hilbert space. In particular, we solve a problem posed by Kurokawa and Takahashi [16].

2. Preliminaries and Lemmas

Let *H* be a real Hilbert space. When $\{x_n\}$ is a sequence in *H*, we denote the strong convergence of $\{x_n\}$ to $x \in H$ by $x_n \to x$ and the weak convergence by $x_n \to x$. We know that for $x, y \in H$ and $\lambda \in \mathbb{R}$,

(2.1)
$$||x+y||^2 \le ||x||^2 + 2\langle y, x+y \rangle;$$

(2.2)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2.$$

Furthermore, we know that for all $x, y, z, w \in H$,

(2.3)
$$2\langle x-y, z-w\rangle = ||x-w||^2 + ||y-z||^2 - ||x-z||^2 - ||y-w||^2.$$

Let D be a closed and convex subset of H. For every $x \in H$, there exists a unique nearest point in D denoted by $P_D x$, that is, $||x - P_D x|| \le ||x - y||$ for every $y \in D$. This mapping P_D is called the *metric projection* of H onto D. It is known that P_D is firmly nonexpansive, that is, the following hold:

$$0 \le \langle x - P_D x, P_D x - y \rangle$$
 and $||x - P_D x||^2 + ||P_D x - y||^2 \le ||x - y||^2$

for any $x \in H$ and $y \in D$; see [19, 20, 21]. Let C be a nonempty subset of H. For a mapping T of C into H, we denote by F(T) the set of all *fixed points* of T and by A(T) the set of all *attractive points* of T, i.e.,

- (1) $F(T) = \{z \in C : z = Tz\};$
- (2) $A(T) = \{z \in H : ||Tx z|| \le ||x z||, \forall x \in C\}.$

Takahashi and Takeuchi [23] proved the following useful lemma.

Lemma 2.1. Let C be a nonempty subset of H and let T be a mapping from C into H. Then, A(T) is a closed and convex subset of H.

We note that a mapping $T: C \to H$ in Lemma 2.1 can not be nonexpansive. The following lemma was also proved by Takahashi and Takeuchi [23].

Lemma 2.2. Let C be a nonempty subset of H and let T be a generalized hybrid mapping from C into itself. Suppose that there exists an $x \in C$ such that $\{T^n x\}$ is bounded. Then $A(T) \neq \emptyset$.

To prove our main result, we need two lemmas.

Lemma 2.3 ([17]). Let $\{\Gamma_n\}$ be a sequence of real numbers that does not decrease at infinity in the sense that there exists a subsequence $\{\Gamma_{n_i}\}$ of $\{\Gamma_n\}$ which satisfies $\Gamma_{n_i} < \Gamma_{n_i+1}$ for all $i \in \mathbb{N}$. Define the sequence $\{\tau(n)\}_{n \ge n_0}$ of integers as follows:

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\},\$$

where $n_0 \in \mathbb{N}$ such that $\{k \leq n_0 : \Gamma_k < \Gamma_{k+1}\} \neq \emptyset$. Then, the following hold:

- (i) $\tau(n_0) \leq \tau(n_0 + 1) \leq \dots$ and $\tau(n) \to \infty$;
- (ii) $\Gamma_{\tau(n)} \leq \Gamma_{\tau(n)+1}$ and $\Gamma_n \leq \Gamma_{\tau(n)+1}$, $\forall n \geq n_0$.

Lemma 2.4 ([2]; see also [26]). Let $\{s_n\}$ be a sequence of nonnegative real numbers, let $\{\alpha_n\}$ be a sequence of [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$, let $\{\beta_n\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$, and let $\{\gamma_n\}$ be a sequence of real numbers with $\limsup_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n\gamma_n + \beta_n$$

for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} s_n = 0$.

3. Strong Convergence Theorem of Halpern's Type

In this section, we prove a strong convergence theorem of Halpern's type [6] for finding attractive points of generalized hybrid mappings in a Hilbert space. Before proving the result, we need the following lemma.

Lemma 3.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let $T: C \to H$ be a generalized hybrid mapping. If $x_n \rightharpoonup z$ and $x_n - Tx_n \rightarrow 0$, then $z \in A(T)$.

Proof. Since $T: C \to H$ is generalized hybrid, there exist $\alpha, \beta \in \mathbb{R}$ such that

(3.1) $\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$

for all $x, y \in C$. Suppose that $x_n \rightharpoonup z$ and $x_n - Tx_n \rightarrow 0$. Replacing x by x_n in (3.1), we have that

$$\alpha \|Tx_n - Ty\|^2 + (1 - \alpha)\|x_n - Ty\|^2 \le \beta \|Tx_n - y\|^2 + (1 - \beta)\|x_n - y\|^2.$$

From this inequality,

$$\alpha(\|Tx_n - x_n\|^2 + \|x_n - Ty\|^2 + 2\langle Tx_n - x_n, x_n - Ty \rangle) + (1 - \alpha)\|x_n - Ty\|^2$$

$$\leq \beta(\|Tx_n - x_n\|^2 + \|x_n - y\|^2 + 2\langle Tx_n - x_n, x_n - y \rangle) + (1 - \beta)\|x_n - y\|^2$$

and hence

$$\begin{aligned} &\alpha(\|Tx_n - x_n\|^2 + 2\langle Tx_n - x_n, x_n - Ty \rangle) + \|x_n - Ty\|^2 \\ &\leq \beta(\|Tx_n - x_n\|^2 + 2\langle Tx_n - x_n, x_n - y \rangle) + \|x_n - y\|^2. \end{aligned}$$

Since $\{x_n\}$ is bounded and $x_n - Tx_n \to 0$, we have that

$$\limsup_{n \to \infty} \|x_n - Ty\|^2 \le \limsup_{n \to \infty} \|x_n - y\|^2.$$

Since $||x_n - Ty||^2 = ||x_n - y||^2 + ||y - Ty||^2 + 2\langle x_n - y, y - Ty \rangle$ and $x_n \rightharpoonup z$, we also have that

$$\limsup_{n \to \infty} \|x_n - y\|^2 + \|y - Ty\|^2 + 2\langle z - y, y - Ty \rangle \le \limsup_{n \to \infty} \|x_n - y\|^2$$

and hence

$$||y - Ty||^2 + 2\langle z - y, y - Ty \rangle \le 0.$$

Using (2.3), we have that

$$||y - Ty||^{2} + ||z - Ty||^{2} - ||z - y||^{2} - ||y - Ty||^{2} \le 0$$

and hence

$$\|z - Ty\|^2 - \|z - y\|^2 \le 0$$

for all $y \in C$. This implies $z \in A(T)$. This completes the proof.

Now we prove a strong convergence theorem of Halpern's type for finding attractive points of generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let H be a Hilbert space and let C be a convex subset of H. Let T be a generalized hybrid mapping from C into itself with $A(T) \neq \emptyset$ and let $P_{A(T)}$ be the metric projection of H onto A(T). Let $z \in C$ and let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1) such that

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad and \quad \liminf_{n \to \infty} \beta_n (1 - \beta_n) > 0.$$

Then $\{x_n\}$ converges strongly to $\bar{x} = P_{A(T)}z$.

Proof. Let $x_1 \in C$ and $u \in A(T)$. Put $M = ||x_1 - u|| + ||z - u||$. Define $z_n = \beta_n x_n + (1 - \beta_n)Tx_n$. Then we have from (2.2) that

$$||z_n - u||^2 = \beta_n ||x_n - u||^2 + (1 - \beta_n) ||Tx_n - u||^2 - \beta_n (1 - \beta_n) ||x_n - Tx_n||^2$$

(3.2)
$$\leq \beta_n ||x_n - u||^2 + (1 - \beta_n) ||x_n - u||^2 - \beta_n (1 - \beta_n) ||x_n - Tx_n||^2$$

$$= ||x_n - u||^2 - \beta_n (1 - \beta_n) ||x_n - Tx_n||^2$$

$$\leq ||x_n - u||^2.$$

It is obvious that $||x_1 - u|| \leq M$. Suppose that $||x_k - u|| \leq M$ for some $k \in \mathbb{N}$. Then we have from (3.2) that

$$\begin{aligned} |x_{k+1} - u|| &= \|\alpha_k z + (1 - \alpha_k) z_k - u\| \\ &\leq \alpha_k \|z - u\| + (1 - \alpha_k) \|z_k - u\| \\ &\leq \alpha_k \|z - u\| + (1 - \alpha_k) \|x_k - u\| \\ &\leq \alpha_k M + (1 - \alpha_k) M \\ &= M. \end{aligned}$$

By mathematical induction, we have that $||x_n - u|| \leq M$ for all $n \in \mathbb{N}$. Thus $\{x_n\}$ is bounded. We have from $u \in A(T)$ that $||Tx_n - u|| \leq ||x_n - u||$ and hence $\{Tx_n\}$ is also bounded. Take $\bar{x} = P_{A(T)}z$. We have from (3.2) that

$$\begin{aligned} \|x_{n+1} - \bar{x}\|^2 &\leq \alpha_n \|z - \bar{x}\|^2 + (1 - \alpha_n) \|z_n - \bar{x}\|^2 \\ (3.3) &\leq \alpha_n \|z - \bar{x}\|^2 + (1 - \alpha_n) (\|x_n - \bar{x}\|^2 - \beta_n (1 - \beta_n) \|x_n - Tx_n\|^2) \\ &\leq \alpha_n \|z - \bar{x}\|^2 + \|x_n - \bar{x}\|^2 - \beta_n (1 - \beta_n) \|x_n - Tx_n\|^2. \end{aligned}$$

We have from (3.3) that

(3.4)
$$\beta_n (1 - \beta_n) \|x_n - Tx_n\|^2 \le \alpha_n \|z - \bar{x}\|^2 + \|x_n - \bar{x}\|^2 - \|x_{n+1} - \bar{x}\|^2.$$

We also have that

(3.5)
$$||x_{n+1} - x_n|| \le \alpha_n ||z - x_n|| + (1 - \alpha_n)(1 - \beta_n) ||x_n - Tx_n||.$$

Case A: Put $\Gamma_n = ||x_n - \bar{x}||^2$ for all $n \in \mathbb{N}$. Suppose that $\Gamma_{n+1} \leq \Gamma_n$ for all $n \in \mathbb{N}$. In this case, $\lim_{n\to\infty} \Gamma_n$ exists and then $\lim_{n\to\infty} (\Gamma_{n+1} - \Gamma_n) = 0$. It follows from $\lim_{n\to\infty} \alpha_n = 0$, $\lim_{n\to\infty} \beta_n (1 - \beta_n) > 0$ and (3.4) that

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$

From $\lim_{n\to\infty} \alpha_n = 0$, (3.5) and (3.6), we have that

(3.7)
$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0$$

Since $\{x_n\}$ is a bounded sequence, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

(3.8)
$$\limsup_{n \to \infty} \langle z - \bar{x}, x_n - \bar{x} \rangle = \lim_{i \to \infty} \langle z - \bar{x}, x_{n_i} - \bar{x} \rangle.$$

Without loss of generality, we may assume that $x_{n_i} \rightharpoonup v$. By (3.6) and Lemma 3.1, we have that $v \in A(T)$. We have from (3.8) that

(3.9)
$$\limsup_{n \to \infty} \langle z - \bar{x}, x_n - \bar{x} \rangle = \langle z - \bar{x}, v - \bar{x} \rangle \le 0.$$

On the other hand, since $x_{n+1} - \bar{x} = \alpha_n(z - \bar{x}) + (1 - \alpha_n)(z_n - \bar{x})$, we have from (2.1) and (3.2) that

$$||x_{n+1} - \bar{x}||^2 \le (1 - \alpha_n) ||z_n - \bar{x}||^2 + 2\alpha_n \langle z - \bar{x}, x_{n+1} - \bar{x} \rangle$$

(3.10)
$$\le (1 - \alpha_n) ||x_n - \bar{x}||^2 + 2\alpha_n \langle z - \bar{x}, x_{n+1} - \bar{x} \rangle$$

$$= (1 - \alpha_n) \|x_n - \bar{x}\|^2 + 2\alpha_n \langle z - \bar{x}, x_{n+1} - x_n \rangle + 2\alpha_n \langle z - \bar{x}, x_n - \bar{x} \rangle.$$

By $\sum_{n=1}^{\infty} \alpha_n = \infty$, (3.7), (3.9), (3.10) and Lemma 2.4, we have $\lim_{n \to \infty} x_n = \bar{x}$.

5

Case B: Suppose that there exists a subsequence $\{\Gamma_{n_i}\} \subset \{\Gamma_n\}$ such that $\Gamma_{n_i} < \Gamma_{n_i+1}$ for all $i \in \mathbb{N}$. In this case, we define $\tau : \mathbb{N} \to \mathbb{N}$ by

$$\tau(n) = \max\{k \le n : \Gamma_k < \Gamma_{k+1}\}$$

Then it follows from Lemma 2.3 that $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$. We have from (3.4) that

(3.11)

$$\beta_{\tau(n)}(1-\beta_{\tau(n)}) \|x_{\tau(n)} - Tx_{\tau(n)}\|^{2} \leq \alpha_{\tau(n)} \|z-\bar{x}\|^{2} + \|x_{\tau(n)} - \bar{x}\|^{2} - \|x_{\tau(n)+1} - \bar{x}\|^{2} \leq \alpha_{\tau(n)} \|z-\bar{x}\|^{2}.$$

By $\lim_{n\to\infty} \alpha_n = 0$, $\lim \inf_{n\to\infty} \beta_n (1-\beta_n) > 0$ and (3.11), we have that

(3.12)
$$\lim_{n \to \infty} \|x_{\tau(n)} - Tx_{\tau(n)}\| = 0.$$

We have from (3.10) that

$$(3.13) \quad \|x_{\tau(n)+1} - \bar{x}\|^2 \le (1 - \alpha_{\tau(n)}) \|x_{\tau(n)} - \bar{x}\|^2 + 2\alpha_{\tau(n)} \langle z - \bar{x}, x_{\tau(n)+1} - \bar{x} \rangle.$$

From $\Gamma_{\tau(n)} < \Gamma_{\tau(n)+1}$, (3.13) and $\alpha_{\tau(n)} > 0$, we have that

(3.14)
$$\|x_{\tau(n)} - \bar{x}\|^2 \leq 2\langle z - \bar{x}, x_{\tau(n)+1} - \bar{x} \rangle$$
$$= 2\langle z - \bar{x}, x_{\tau(n)+1} - x_{\tau(n)} \rangle + 2\langle z - \bar{x}, x_{\tau(n)} - \bar{x} \rangle.$$

By $\lim_{n\to\infty} \alpha_n = 0$, (3.5) and (3.12), we have that

(3.15)
$$\lim_{n \to \infty} \|x_{\tau(n)+1} - x_{\tau(n)}\| = 0.$$

Since $\{x_{\tau(n)}\}\$ is a bounded sequence, there exists a subsequence $\{x_{\tau(n_i)}\}\$ such that

(3.16)
$$\limsup_{n \to \infty} \langle z - \bar{x}, x_{\tau(n)} - \bar{x} \rangle = \lim_{i \to \infty} \langle z - \bar{x}, x_{\tau(n_i)} - \bar{x} \rangle.$$

Following the same argument as the proof of Case A for $\{x_{\tau(n_i)}\}$, we have that

(3.17)
$$\limsup_{n \to \infty} \langle z - \bar{x}, x_{\tau(n)} - \bar{x} \rangle \le 0.$$

Using (3.14), (3.15) and (3.17), we have that

(3.18)
$$\lim_{n \to \infty} \|x_{\tau(n)} - \bar{x}\| = 0.$$

By (3.15) we have that

(3.19)
$$\lim_{n \to \infty} \|x_{\tau(n)+1} - \bar{x}\| = 0.$$

Using Lemma 2.3 for (3.19) again, we have that

$$\lim_{n \to \infty} \|x_n - \bar{x}\| = 0.$$

This completes the proof.

4. Applications

In this section, using Theorem 3.2, we establish well-known and new strong convergence theorems of Halpern's type in a Hilbert space. We first prove a strong convergence theorem of Halpern's type for finding fixed points of generalized hybrid mappings, which is related to Wittmann's theorem (Theorem 1.1).

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let T be a generalized hybrid mapping from C into itself with $F(T) \neq \emptyset$. Let $z \in C$ and let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1) such that

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad and \quad \liminf_{n \to \infty} \beta_n (1 - \beta_n) > 0.$$

Then $\{x_n\}$ converges strongly to $\bar{x} \in F(T)$, where $\bar{x} = P_{F(T)}z$.

Proof. Since T is generalised hybrid, there exist
$$\alpha, \beta \in \mathbb{R}$$
 such that

(4.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Replacing x by a fixed point u of T, we have that for any $y \in C$,

$$\alpha \|u - Ty\|^{2} + (1 - \alpha)\|u - Ty\|^{2} \le \beta \|u - y\|^{2} + (1 - \beta)\|u - y\|^{2}$$

and hence $||u - Ty|| \leq ||u - y||$. This means that an (α, β) -generalized hybrid mapping with a fixed point is quasi-nonexpansive. Thus we have that if $u \in F(T)$, then

$$||Ty - u|| \le ||y - u||$$

for all $y \in C$. This implies that $F(T) \subset A(T)$. Then we have that A(T) is nonempty. From Theorem 3.2, it follows that $\{x_n\}$ converges strongly to $\bar{x} \in A(T)$. Since C is closed and $x_n \to \bar{x}$, we have $\bar{x} \in C$. From $\bar{x} \in A(T) \cap C$, we have that

$$||T\bar{x} - \bar{x}|| \le ||\bar{x} - \bar{x}|| = 0$$

and hence $\bar{x} \in F(T)$. Furthermore, we have that

$$||z - \bar{x}|| = \min\{||z - u|| : u \in A(T)\} \le \min\{||z - u|| : u \in F(T)\}$$

and hence $\bar{x} = P_{F(T)}z$. This completes the proof.

As direct consequences of Theorems 3.2 and 4.1, we have the following results.

Theorem 4.2. Let H be a Hilbert space and let C be a convex subset of H. Let T be a nonexpansive mapping from C into itself, i.e.,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

Assume $A(T) \neq \emptyset$ and let $P_{A(T)}$ be the metric projection of H onto A(T). Let $z \in C$ and let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1) such that

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad and \quad \liminf_{n \to \infty} \beta_n (1 - \beta_n) > 0.$$

7

Then $\{x_n\}$ converges strongly to $\bar{x} = P_{A(T)}z$. Additionally, if C is closed and convex, then $\{x_n\}$ converges strongly to $\bar{x} = P_{F(T)}z$.

Proof. Since a (1, 0)-generalized hybrid mapping T is nonexpansive, we have the desired result from Theorems 3.2 and 4.1.

Theorem 4.3. Let H be a Hilbert space and let C be a convex subset of H. Let T be a nonspreading mapping from C into itself, i.e.,

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

Assume $A(T) \neq \emptyset$ and let $P_{A(T)}$ be the metric projection of H onto A(T). Let $z \in C$ and let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1) such that

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad and \quad \liminf_{n \to \infty} \beta_n (1 - \beta_n) > 0.$$

Then $\{x_n\}$ converges strongly to $\bar{x} = P_{A(T)}z$. Additionally, if C is closed and convex, then $\{x_n\}$ converges strongly to $\bar{x} = P_{F(T)}z$.

Proof. Since a (2, 1)-generalized hybrid mapping T is nonspreading, we have the desired result from Theorems 3.2 and 4.1.

Theorem 4.4. Let H be a Hilbert space and let C be a convex subset of H. Let T be a hybrid mapping from C into itself, i.e.,

$$3||Tx - Ty||^{2} \le ||x - y||^{2} + ||Tx - y||^{2} + ||Ty - x||^{2}, \quad \forall x, y \in C.$$

Assume $A(T) \neq \emptyset$ and let $P_{A(T)}$ be the metric projection of H onto A(T). Let $z \in C$ and let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)Tx_n), \quad \forall n \in \mathbb{N},$$

where $\{\alpha_n\}$ and $\{\beta_n\}$ are two sequences in (0,1) such that

$$\lim_{n \to \infty} \alpha_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad and \quad \liminf_{n \to \infty} \beta_n (1 - \beta_n) > 0.$$

Then $\{x_n\}$ converges strongly to $\bar{x} = P_{A(T)}z$. Additionally, if C is closed and convex, then $\{x_n\}$ converges strongly to $\bar{x} = P_{F(T)}z$.

Proof. Since a $(\frac{3}{2}, \frac{1}{2})$ -generalized hybrid mapping T is nonspreading, we have the desired result from Theorems 3.2 and 4.1.

Theorem 4.3 solves a problem posed by Kurokawa and Takahashi [16]. We know that a nonspreading mapping is not continuous in general. In fact, we can give the following example [10] of nonspreading mappings in a Hilbert space. Let H be a real Hilbert space. Set $E = \{x \in H : ||x|| \le 1\}, D = \{x \in H : ||x|| \le 2\}$ and $C = \{x \in H : ||x|| \le 3\}$. Define a mapping $S : C \to C$ as follows:

$$Sx = \begin{cases} 0, & x \in D, \\ P_E x, & x \notin D. \end{cases}$$

Then the mapping S is a nonspreading mapping which is not continuous.

Acknowledgements. The first author was partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science. The second and the third authors were partially supported by the grant NSC 99-2115-M-110-007-MY3 and the grant NSC 99-2115-M-037-002-MY3, respectively.

References

- [1] S. Akashi and W. Takahashi, Strong convergence theorem for nonexpansive mappings on star-shaped sets in Hilbert spaces, Appl. Math. Comput., to appear.
- [2] K. Aoyama, Y. Kimura, W.Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360.
- [3] J.-B. Baillon. Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Ser. A-B 280 (1975), 1511-1514.
- [4] F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201–225.
- [5] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- [6] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [7] M. Hojo and W. Takahashi, Weak and strong convergence theorems for generalized hybrid mappings in Hilbert spaces, Sci. Math. Jpn. 73 (2011), 31–40.
- [8] T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, J. Nonlinear Convex Anal. 71 (2009), 21–32.
- [9] S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and non-spreading mappings in a Hilbert space, Nonlinear Anal. **71** (2009), 2082–2089.
- [10] T. Igarashi, W. Takahashi and K. Tanaka, Weak convergence theorems for nonspreading mappings and equilibrium problems, to appear.
- [11] S. Itoh and W. Takahashi, Single-valued mappings, Multivalued mappings and fixed-point theorems, J. Math. Anal. Appl. 59 (1977), 514–521.
- [12] S. Itoh and W. Takahashi, The common fixed points theory of singlevalued mappings and multi-valued mappings, Pacific J. Math. 79 (1978), 493–508.
- [13] P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- [14] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008), 824–835.
- [15] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166–177.
- [16] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonlspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562–1568.
- [17] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
- [18] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253–256.
- [19] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [20] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000.
- [21] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
- [22] W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- [23] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. **12** (2011), 399–406.
- [24] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417–428.

- [25] W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, Taiwanese J. Math. 15 (2011), 457–472.
- [26] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113.
- [27] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486–491.

(Wataru Takahashi) Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp

(Ngai-Ching Wong) DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNI-VERSITY, KAOHSIUNG 80424, TAIWAN

 $E\text{-}mail\ address:\ \texttt{wong@math.nsysu.edu.tw}$

(Jen-Chih Yao) Center for General Education, Kaohsiung Medical University, Kaohsiung 80702, Taiwan

E-mail address: yaojc@kmu.edu.tw