HAHN-BANACH-KANTOROVICH TYPE THEOREMS WITH THE RANGE SPACE NOT NECESSARILY (0)-COMPLETE

RODICA-MIHAELA DĂNEŢ AND NGAI-CHING WONG

ABSTRACT. In the classical Hahn-Banach-Kantorovich theorem, the range space Y is Dedekind complete. In this paper, by extending the arguments of the original Hahn-Banach-Kantorovich theorem and using an idea of Y. A. Abramovich and A. W. Wickstead, we can weaken the order theoretic assumption on Y and obtain more general results in the settings of Banach lattices as well as ordered linear spaces.

1. INTRODUCTION

In the operator version of the Hahn-Banach-Kantorovich theorem, the range space Y is assumed to be Dedekind complete. This assumption can be considerably relaxed by using a weaker interpolation property, the so-called Cantor property on Y. Some generalizations of this type were given by H. B. Cohen [3], J. Lindenstrauss [9] and G. Buskes [2]. In particular, Y. A. Abramovich and A. W. Wickstead [1] provided us the following

Theorem 1 ([1]). Let X and Y be Banach lattices such that X is separable and Y has the Cantor property. Let $P : X \to Y_+$ be a continuous seminorm. If G is a linear subspace of X and $T : G \to Y$ is a continuous linear operator satisfying $T(v) \leq P(v)$ for all v in G then there exists a continuous extension S of T to the whole of X such that $S(x) \leq P(x)$ for all x in X.

In this paper, we obtain two new results along the line. The first one states that any positive linear operator from a majorizing subspace of a separable Banach lattice into a Banach lattice with the Cantor property can be extended. The second one states that any (o)-continuous linear operator from a subspace of an ordered linear space with (os)-property into an ordered linear space with the strong (σ)-interpolation property dominated by an (o)-continuous seminorm can also be extended.

¹⁹⁹¹ Mathematics Subject Classification. 47B60, 46A22.

Key words and phrases. Ordered linear space, Banach lattice, Hahn-Banach-Kantorovich type theorems, Cantor property, strong (σ)-interpolation property.

2. Preliminaries

As far as the linear-order-theoretical terminology is concerned, we mostly follow Cristescu's book [4]. In particular, an ordered linear space X is said to have the (os)-*property* if there exists a countable subset D of X such that for each x in X there is a sequence $\{x_n\}_n$ in D with $x_n \xrightarrow{o} x$. A linear subspace G of X is a *majorizing subspace* if for every x in X there exists a v in G with $x \leq v$. Consequently, there also exists a u in G such that $u \leq x$.

Definition. Let Y be an ordered linear space. Y is said to have the Cantor property (or the (σ) -interpolation property or the countable property) if for every increasing sequence $\{x_n\}_n$ and every decreasing sequence $\{z_m\}_m$ in Y with $x_n \leq z_m$, $\forall n, m \in \mathbb{N}$, there is a y in Y such that $x_n \leq y \leq z_m$, $\forall n, m \in \mathbb{N}$. Y is said to have the strong (σ) -interpolation property if for every pair of sequences $\{x_n\}_n$ and $\{z_m\}_m$ in Y with $x_n \leq z_m$, $\forall n, m \in \mathbb{N}$, there is a y in Y such that $x_n \leq y \leq z_m, \forall n, m \in \mathbb{N}$. In case Y is a vector lattice, these two notions coincide.

G. Seever [10] showed that for a completely regular space K, C(K) has the Cantor property if and only if K is an F-space, i.e. every pair of disjoint open (F_{σ}) -sets in K has disjoint closures. C. B. Huijsmans and B. De Pagter [8] showed that an Archimedean vector lattice Y has the Cantor property if and only if Y is uniformly complete and normal. In general, for a vector lattice we have: Dedekind completeness implies Dedekind (σ) -completeness implies Cantor property implies order completeness implies uniform completeness (see e.g. [12, p. 696]).

In case Y is a Banach lattice, A. W. Wickstead [11] proved that the following are all equivalent: (1) Y has the Cantor property; (2) The space of all regular operators from convergent sequences into Y has the strong (σ)-interpolation property; (3) The space of all regular operators from convergent sequences into Y has the Riesz decomposition property. More recently, N. Dăneț [6] showed that they are also equivalent to: (3') The space of all regular operators from any separable Banach lattice into Y has the Riesz decomposition property.

3. Main results

We start with a Kantorovich-type theorem concerning the extension of a positive linear operator. Note that every positive linear operator from a majorizing subspace of a Banach lattice into a Banach lattice is continuous.

Theorem 2 Let X be a separable Banach lattice, G a majorizing subspace of X, and Y a Banach lattice with the Cantor property. If $T : G \to Y$ is a positive linear operator then there exists a positive linear operator $S : X \to Y$ such that $S(v) = T(v), \forall v \in G.$

Proof. Let $x_0 \in X \setminus G$ and G_1 the linear hull of $G \cup \{x_0\}$. We will extend T to G_1 . Because G is a majorizing subspace of X we can choose u, v from G such that $u \leq x_0 \leq v$. Since the operator T is positive we have

(1)
$$T(u) \le T(v).$$

Let W be the nonempty set of all such u, v in G. Since X is separable, there exists a countable dense subset D of W. In particular, the inequality (1) holds for any u, v in D with $u \leq x_0 \leq v$. By the Cantor property of Y we can find a y_0 in Y satisfying

$$T(u) \le y_0 \le T(v)$$
, for all $u, v \in D$, $u \le x_0 \le v$.

Since T is continuous, the last double inequality remains true for all u, v in G with $u \leq x_0 \leq v$. Now, letting $T_1(x_0) = y_0$ we obtain a desired extension of T, namely $T_1: G_1 \to Y$, defined by

$$T_1(v + \lambda x_0) = T(v) + \lambda y_0.$$

Obviously G_1 is again a majorizing subspace of X. Moreover, $T_1 : G_1 \to Y$ is positive. Indeed, let $v + \lambda x_0 \ge 0$ with $\lambda \ne 0$. If $\lambda > 0$ then $x_0 \ge -\frac{1}{\lambda}v$ and this implies $y_0 \ge T(-\frac{1}{\lambda}v) = -\frac{1}{\lambda}T(v)$. Therefore, $T_1(x_0) \ge -\frac{1}{\lambda}T(v)$, and thus $T_1(v + \lambda x_0) \ge 0$. If $\lambda < 0$ we get the same result.

Finally, a routine application of Zorn's lemma will finish the proof. \Box

Recall that an *axial element* is an e in X_+ such that for each x in X there exists $\lambda > 0$ satisfying $x \leq \lambda e$.

Corollary 3 Let X and Y be Banach lattices such that X is separable and contains an axial element e and Y has the Cantor property. Then for each y_0 in Y_+ there exists a positive linear operator $U: X \to Y$ with $U(e) = y_0$.

Proof. Because e is an axial element of X, the linear hull G = Sp(e) is a majorizing subspace of X. We define $T: G \to Y$ by $T(\lambda e) = \lambda y_0$ and then apply Theorem 2. \Box

Before stating another corollary of Theorem 2, we remark that any linear subspace G of an ordered linear space X containing an element in the interior $\operatorname{Int} X_+$ of the positive cone X_+ of X is majorizing. Moreover, any positive linear operator from X into an ordered linear space Y vanishing in a majorizing subspace is necessarily zero.

Corollary 4 Let X be a separable Banach lattice with $\operatorname{Int} X_+ \neq \emptyset$, and Y a Banach lattice with the Cantor property. Then for any linear subspace G of X disjoint from $\operatorname{Int} X_+$, there exists a non-zero positive linear operator $U: X \to Y$ with $U|_G = 0$.

Proof. We choose an element x_0 from Int X_+ and denote by G_0 the linear hull of $G \cup \{x_0\}$. It follows that G_0 is a majorizing subspace of X. Define $T_0 : G_0 \to Y$ by $T_0(v + \lambda x_0) = \lambda y_0$ for some fixed element y_0 in Y_+ .

Let us prove that T_0 is positive. Let $v \in G$ and $\lambda \neq 0$ such that $v + \lambda x_0 \geq 0$. Suppose that $\lambda < 0$. Then $-\lambda x_0 \in \operatorname{Int} X_+$ and hence $v = v + \lambda x_0 + (-\lambda x_0) \in \operatorname{Int} X_+$. This conflicts with the hypothesis that $G \cap \operatorname{Int} X_+ = \emptyset$. So $\lambda > 0$ and hence $T_0(v + \lambda x_0) = \lambda y_0 \geq 0$. By Theorem 2 we can extend T_0 to a positive linear operator $U: X \to Y$. Obviously $U \mid_G = 0$. \Box

The following results supplement Theorem 1. The first appears without proof in [7].

Theorem 5 Suppose X and Y are ordered linear spaces, G is a linear subspace of X with the (os)-property, and Y has the strong (σ) -interpolation property. Let $T : G \to Y$ be an (o)-continuous linear operator and $P : X \to Y_+$ an (o)-continuous seminorm such that $T(v) \leq P(v)$ for all v in G. Then for any x_0 in $X \setminus G$ we can extend T to an (o)-continuous linear operator $T_1 : G_1 =$ $Sp(G \cup \{x_0\}) \to Y$ such that $T_1(z) \leq P(z)$ for all z in G_1 . **Proof.** Because G has the (os)-property, there exists a countable subset D of G such that, for each v in G, there is a sequence $(v_n)_{n \in \mathbb{N}}$ in D with $v_n \xrightarrow{o} v$. If $u, v \in G$ then

$$T(u) - T(v) = T(u - v) \le P(u - v) =$$

= $P((u + x_0) - (v + x_0)) \le P(u + x_0) + P(v + x_0).$

 So

(2)
$$-P(v+x_0) - T(v) \le P(u+x_0) - T(u), \text{ for all } u, v \in G.$$

In particular, the inequality holds for all u, v in D. Using the strong (σ) -interpolation property of Y we find a y_0 in Y such that

(3)
$$-P(v+x_0) - T(v) \le y_0 \le P(u+x_0) - T(u), \text{ for all } u, v \in D.$$

But T and P are (o)-continuous and hence the inequalities (3) hold for all u, v in G. Now, by letting

$$T_1(v + \lambda x_0) = T(v) + \lambda y_0$$

we obtain a linear extension of T to G_1 .

It remains to show that $T_1(v + \lambda x_0) \leq P(v + \lambda x_0)$ for all v in G and λ in \mathbb{R} , or equivalently,

(4)
$$T(v) + \lambda y_0 \le P(v + \lambda x_0)$$
 for all $v \in G$ and $\lambda \in \mathbb{R}$.

If $\lambda = 0$, the inequality (4) is valid because $T_1 = T \leq P$ on G. If $\lambda > 0$, using the right inequality in (3), for $\frac{1}{\lambda}v$ instead of u, we obtain

$$y_0 \le P(\frac{1}{\lambda}v + x_0) - T(\frac{1}{\lambda}v) = \frac{1}{\lambda} \left[P(v + \lambda x_0) - T(v) \right].$$

Therefore,

$$T(v) + \lambda y_0 \le P(v + \lambda x_0).$$

If $\lambda < 0$, we use the left inequality in (3) to establish (4) instead.

Being dominated by the (o)-continuous seminorm P, the extension T_1 of T is (o)-continuous as well. \Box

Corollary 6 Suppose in Theorem 5, in addition, every linear subspace of X has the (os)-property. Then there exists an (o)-continuous linear operator $S: X \to Y$ such that S(v) = T(v) for all v in G, and $S(x) \leq P(x)$ for all x in X.

Proof. It follows from Theorem 5 and an application of Zorn's lemma. \Box

References

- [1] Y. A. Abramovich and A. W. Wickstead, The regularity of order bounded operators into C(K), II, Quart J. Math. Oxford (2) 44 (1993), 257-270.
- [2] G. Buskes, Extension of Riesz homomorphisms, Thesis, Univ. of Nijmegen, 1983.
- [3] H. B. Cohen, The K-norm extension property for Banach spaces, Proc. Amer. Math. Soc. **15** (1964), 797-802.
- [4] R. Cristescu, Ordered Vector Spaces and linear operators, Ed. Acad. Abacus Press Kent, England, 1976.
- [5] R. Cristescu, Order structures in normed vector spaces (in Romanian), Ed. St. și enciclopedică, Bucuresti, 1983.
- N. Dănet, The Riesz decomposition property for the space of regular operators, Proc. [6]Amer. Math. Soc. (to appear).
- [7] R. Dănet, Extension theorems with the range having an interpolation property, in Seminaire d'espaces linéaires ordonnés topologiques, Univ. of Bucharest, 17 (1998), 97-98.
- [8] C. B. Huljsmans and B. de Pagter, On z-ideals and d-ideals in Riesz Spaces II, Indag. Math. 42 (1980), 391-408.
- [9] J. Lindenstrauss, On the extension of operators with range in a C(K)-space, Proc. Amer. Math. Soc. 15 (1964), 218-224.
- [10] G. L. Seever, Measures of F-spaces, Trans. Amer. Math. Soc. 193 (1968), 267-280.
- [11] A. W. Wickstead, Spaces of operators with Riesz separation property, Indag. Math. N.S. (2) 6 (1995), 235-245.
- [12] A. C. Zaanen, Riesz spaces II, North-Holland Mathematical Library 30, North-Holland Publishing Co., Amsterdam-New York, 1983.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF CIVIL ENGINEERING OF BUCHAREST, 122-124, LACUL TEI BLVD., 72302 BUCHAREST 38, ROMANIA. *E-mail address*: ndanet@fx.ro

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KAOHSI-UNG, 80424, TAIWAN, R.O.C.

E-mail address: wong@math.nsysu.edu.tw