On the solution existence of generalized vector quasi-equilibrium problems with discontinuous multifunctions¹

B. T. Kien², N. Q. Huy³ and N.C. Wong⁴

Abstract. In this paper we deal with the following generalized vector quasiequilibrium problem: given a closed convex set K in a normed space X, a subset D in a Hausdorff topological vector space Y, and a closed convex cone C in \mathbb{R}^n . Let $\Gamma: K \to 2^K, \Phi: K \to 2^D$ be two multifunctions and $f: K \times D \times K \to \mathbb{R}^n$ be a single-valued mapping. Find a point $(\hat{x}, \hat{y}) \in K \times D$ such that

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), \{f(\hat{x}, \hat{y}, z) : z \in \Gamma(\hat{x})\} \cap (-\operatorname{Int} C) = \emptyset.$$

We prove some existence theorems for the problem in which Φ may be discontinuous and K may be unbounded.

Keywords: Solution existence, generalized vector quasi-equilibrium problem, implicit generalized quasivariational inequality, lower semicontinuity, upper semicontinuity, Hausdorff lower semicontinuity, C-convex, C-lower semicontinuity, C-upper semicontinuity.

¹This research was partially supported by a grant from the National Science Council of Taiwan, ROC.

² Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804 (on leave from National University of Civil Engineering, 55 Giai Phong, Hanoi, Vietnam). Email: btkien@math.nsysu.edu.tw

 $^{^3}$ Department of Mathematics, Hanoi Pedagogical University, Xuan Hoa, Vinh Phuc Province, Vietnam.

⁴ Corresponding author. Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung, Taiwan 804. Email: wongc@math.nsysu.edu.tw.

1 Introduction

Throughout this paper, C is a closed convex cone in \mathbb{R}^n such that $\operatorname{Int} C \neq \emptyset$ and $C \neq \mathbb{R}^n$, where $\operatorname{Int} C$ denotes the interior of C. Let X and Y be a Hausdorff topological vector space, $K \subseteq X$ and $D \subseteq Y$ be nonempty sets. Let $\Gamma : K \to 2^K, \Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to \mathbb{R}^n$ be a single-valued mapping. The generalized vector quasi-equilibrium is the problem of finding $(\hat{x}, \hat{y}) \in K \times D$ such that

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), \{f(\hat{x}, \hat{y}, z) : z \in \Gamma(\hat{x})\} \cap (-\operatorname{Int} C) = \emptyset.$$
(1)

The problem will denoted by $P(K, \Gamma, \Phi, f)$ ((P) for short). We denote by Sol(P) the solution set of (P).

It is noted that $P(K, \Gamma, \Phi, f)$ covers several generalized quasivariational inequalities and generalized vector equilibrium problems. Here are some of them.

(A) If n = 1, $C = R_+$ then (P) reduces to the implicit quasivariational inequality problem: find $\hat{x} \in K$ and $\hat{y} \in \Phi(\hat{x})$ such that

$$\hat{x} \in \Gamma(\hat{x}) \text{ and } f(\hat{x}, \hat{y}, z) \ge 0 \ \forall z \in \Gamma(\hat{x}).$$
 (2)

(B) If $\Gamma(x) = K$ for all $x \in K$ then (P) reduces to the generalized vector equilibrium problems: find $\hat{x} \in K$ and $\hat{y} \in \Phi(\hat{x})$ such that

$$\{f(\hat{x}, \hat{y}, z) : z \in K\} \cap (-\operatorname{Int} C) = \emptyset.$$
(3)

(C) If n = 1, $C = R_+$, $Y = X^* = D$ and $f(x, y, z) = \langle y, z - x \rangle$ then (P) reduces to the generalized quasivariational inequality problem: find $\hat{x} \in K$ and $\hat{y} \in \Phi(\hat{x})$ such that

$$\hat{x} \in \Gamma(\hat{x}) \text{ and } \langle \hat{y}, z - \hat{x} \rangle \ge 0 \ \forall z \in \Gamma(\hat{x}).$$
 (4)

The solution existence of (2), (3) and (4) has become a basic research topic which continues to attract of researchers in applied mathematics. We refer the readers to [3]-[13], [15]-[20], [26]-[34] and references given therein for recent results on the solution existence of (2), (3) and (4) with discontinuous multifunctions.

Since the generalized vector quasi-equilibrium problem covers many class of variational inequalities and vector equilibrium problems, it can be seen as an efficient model to study the solution existence of these class in a unitary form.

The aim of this paper is to derive some solution existence theorems for (P) with discontinuous multifunctions. Namely, we will establish some existence

theorems in which Φ may not be continuous and K may be unbounded. Under certain conditions our results extend the results in [6], [7], [10]-[12] and some preceding results. In order to obtain the results we first reduce problem (P) to problem (1) by the scalarization method and we then use solution existence theorems in [18] to establish our results.

The rest of the paper consists of two sections. In section 2 we recall some auxiliary results and the scalariation method. Section 3 is devoted to main results.

2 Auxiliary results

Let C be a closed convex cone in \mathbb{R}^n . A single-valued mapping $g: X \to \mathbb{R}^n$ is called C-upper semicontinuous (C-u.s.c., for short) on X if for every $z \in Z$ the set $g^{-1}(z - \operatorname{Int} C)$ is open in X (see [27]). In [27], Tanaka proved that g is C-u.s.c. on X if and only if for each fixed $x \in X$ and for any $y \in \operatorname{Int} C$, there exists a neighborhood U of x such that $g(u) \in g(x) + y - \operatorname{Int} C$ for all $u \in U$. Also, g is said to be C - lower semicontinuous (C-l.s.c., for short) on X if for each fixed $x \in X$ and for any $y \in \operatorname{Int} C$, there exists a neighborhood V of x such that $g(x) - y \in g(v) - \operatorname{Int} C$ for all $v \in V$.

Let K be a nonempty convex subset in X. A single-valued mapping $h: K \to Z$ is called C-convex if for every $x, x' \in K$ and $t \in [0, 1]$ one has

$$th(x) + (1-t)h(x') - h(tx + (1-t)x') \in C.$$

If -h is C - convex then h is said to be C - concave on K.

For each cone C, the set

$$C^* := \{ z^* \in \mathbb{R}^n : \langle z^*, z \rangle \ge 0 \text{ for all } z \in C \}$$

is said to be the polar cone of C. Note that C^* has a compact base B^* , that is, $C^* = \bigcup_{t>0} tB^*$ where $B^* \subset C^*$ is convex and compact with $0 \notin B^*$ (see [21]). When $\operatorname{Int} C \neq \emptyset$ and $\overline{z} \in \operatorname{Int} C$, $\overline{z} \neq 0$ the the set

$$B^* = \{ z^* \in C^* : \langle z^*, \overline{z} \rangle = 1 \}$$

is a compact convex base for C^* . Put $C^*_+ = C^* \setminus \{0\}$. ¿From the bipolar theorem (see, e.g., [15]), we have

$$z \in C \iff [\langle z^*, z \rangle \ge 0 \ \forall z^* \in C^*] \iff [\langle z^*, z \rangle \ge 0 \ \forall z^* \in B]$$
(5)

and

$$z \in \operatorname{Int} C \iff [\langle z^*, z \rangle > 0 \ \forall z^* \in C_+^*] \iff [\langle z^*, z \rangle > 0 \ \forall z^* \in B].$$
(6)

The following lemma gives us an useful tool of the scalarization procedure.

Lemma 2.1 Let g be a single-valued mapping from K into Z and $u^* \in C^*_+$. Let $\phi : K \to R$ be a mapping defined by $\phi(x) = \langle u^*, g(x) \rangle$ for all $x \in K$. Then the following assertions are valid:

- (a) If g is C-convex then ϕ is convex ;
- (b) If g is C-concave then ϕ is concave;
- (c) If g is C-u.s.c. then ϕ u.s.c;
- (d) If g is C-l.s.c. then ϕ is l.s.c.

Proof. Since g is C-convex, then for all $x, x' \in K$ and $t \in [0, 1]$ one has

$$tg(x) + (1-t)g(x') - g(tx + (1-t)x') \in C.$$

By (5) we have $\langle u^*, tg(x) + (1-t)g(x') - g(tx + (1-t)x') \rangle \ge 0$. Hence

$$t\langle u^*, g(x)\rangle + (1-t)\langle u^*, g(x')\rangle \ge \langle u^*g(tx+(1-t)x')\rangle.$$

This implies that

$$t\phi(x) + (1-t)\phi(x') \ge \phi(tx + (1-t)x').$$

Hence we obtain (a). The proof of (b) is similar to the proof of (a).

For the assertion (c) we assume that $x_n \to x$. We shall prove that $\limsup_{n\to\infty} \phi(x_n) \leq \phi(x)$. Choose $y_j \in \text{Int}C$ such that $y_j \to 0$. Then for each j > 0 there exists a neighborhood U_j of x such that

$$g(u) \in g(x) + y_j - \operatorname{Int} C \ \forall u \in U_j.$$

Therefore for each j there exists $n_j > 0$ such that

$$g(x_n) \in g(x) + y_j - \operatorname{Int} C \ \forall n > n_j$$

By (6) it follows that $\langle u^*, g(x_n) - g(x) - y_j \rangle < 0$. Hence

$$\phi(x_n) = \langle u^*, (g(x_n) - g(x) - y_j + g(x) + y_j \rangle$$

= $\langle u^*g(x_n) - g(x) - y_j \rangle + \langle u^*, (g(x) + y_j \rangle$
< $\langle u^*, g(x) \rangle + \langle u^*, y_j \rangle$

for all $n > n_j$. This implies that $\limsup_{n \to \infty} \langle \phi(x_n) \leq \langle u^*, g(x) \rangle + \langle u^* y_j \rangle$. By letting $j \to \infty$ and noting that $\langle u^*, y_j \rangle \to 0$ we obtain

$$\limsup_{n \to \infty} \phi(x_n) \le \langle u^*, g(x) \rangle = \phi(x).$$

The proof of assertion (d) is similar to (c). \Box

Recall that a multifunction $\Gamma : X \to 2^E$ from a normed space X into a normed space E is said to be lower semicontinuous (l.s.c., for short) at $\overline{x} \in X$ if for any open set V in E satisfying $V \cap \Gamma(\overline{x}) \neq \emptyset$, there exists a neighborhood U of \overline{x} such that $V \cap \Gamma(x) \neq \emptyset$ for all $x \in U$. Γ is said to be Hausdorff l.s.c., at $\overline{x} \in K$ if for any $\epsilon > 0$, there exists a neighborhood W of \overline{x} such that

 $\Gamma(\overline{x}) \subset \Gamma(x) + \epsilon B$ for all $x \in W$.

Here B is the unit open ball in E.

We now return to problem (2). By using the Michael continuous selection theorem, in [18] we obtained the following result.

Lemma 2.2 (C.f. [18, Theorem 3.1]) Let $X = R^m$, K be a convex compact set in X and D be a nonempty set in Y. Let $\Gamma : K \to 2^K$, $\Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to R$ be a single-valued mapping. Assume the following conditions are fulfilled:

(i) Γ is l.s.c. with nonempty convex values on K and the set $M = \{x \in K : x \in \Gamma(x)\}$ is closed;

(ii) the set $\Phi(x)$ is nonempty, compact for each $x \in K$ and convex for each $x \in M$;

(iii) for each $z \in K$, the set $\{x \in M \mid \sup_{y \in \Phi(x)} f(x, y, z) \ge 0\}$ is closed;

(iv) for each $x \in M$, the set $\{z \in K \mid \sup_{y \in \Phi(x)} f(x, y, z) \ge 0\}$ is closed;

(v) for each $x \in M$ there exists $y \in \Phi(x)$ such that f(x, y, x) = 0;

(vi) for each $x \in M$ and $y \in \Phi(x)$, the function f(x, y, .) is convex and l.s.c.;

(vii) for each $x \in M$ and $z \in \Gamma(x)$, the function f(x, ., z) is concave and u.s.c.

Then there exists $(\hat{x}, \hat{y}) \in K \times D$ such that

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), f(\hat{x}, y, z) \ge 0 \ \forall z \in \Gamma(\hat{x}).$$

$$(7)$$

3 Existence results

In this section we keep all notations in preceding sections and assume that $f: K \times D \times K \to \mathbb{R}^n$ defined by

$$f(x, y, z) = (f_1(x, y, z), f_2(x, y, z), \dots, f_n(x, y, z)),$$

where $f_i : K \times D \times K \to R$, i = 1, 2, ..., n are scalar functions. For each $\xi \in C^*_+$ we consider the following problem.

 (P_{ξ}) Find $(\hat{x}, \hat{y}) \in K \times D$ such that

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), \langle \xi, f(\hat{x}, \hat{y}, z) \rangle \ge 0 \ \forall z \in \Gamma(\hat{x}).$$
 (8)

We denote by $\operatorname{Sol}(P_{\xi})$ the solution set of problem P_{ξ} .

The following result gives a relation between Sol(P) and $Sol(P_{\xi})$.

Lemma 3.1 (a)

$$\bigcup_{\xi \in C_+^*} \operatorname{Sol}(P_\xi) \subset \operatorname{Sol}(P).$$
(9)

(b) If Γ has convex values and $f(x, y, \cdot)$ is C-strongly convex for each $(x, y) \in M \times \Phi(x)$, i.e.,

 $tf(x, y, z_1) + (1 - t)f(x, y, z_2) \in f(x, y, tz_1 + (1 - t)z_2) + \text{Int}C \cup \{0\}$

for all $z_1, z_2 \in K$ and $t \in [0, 1]$, then

$$\bigcup_{\xi \in C_+^*} \operatorname{Sol}(P_\xi) = \operatorname{Sol}(P).$$

Proof. (a) Suppose that (\hat{x}, \hat{y}) belongs to the left hand side of (9). Then there exists $\xi \in C_+^*$ such that (8) holds. By (6) we have

$$f(\hat{x}, \hat{y}, z) \notin -\text{Int}C \ \forall z \in \Gamma(\hat{x}).$$

This means that

$$\{f(\hat{x}, \hat{y}, z) : z \in \Gamma(\hat{x})\} \cap (-\operatorname{Int} C) = \emptyset.$$

Hence $(\hat{x}, \hat{y}) \in \text{Sol}(P)$ and so $\bigcup_{\xi \in C^*_+} \text{Sol}(P_\xi) \subset \text{Sol}(P)$.

(b) Taking any $(\hat{x}, \hat{y}) \in \text{Sol}(P)$, we have $(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x})$ and

$$\{f(\hat{x}, \hat{y}, z) : z \in \Gamma(\hat{x})\} \cap (-\operatorname{Int} C) = \emptyset$$

This implies that

$$\{f(\hat{x}, \hat{y}, z) + c : (z, c) \in \Gamma(\hat{x}) \times \text{Int}C\} \cap (-\text{Int}C) = \emptyset.$$

We want to check that the set

$$Q := \{ f(\hat{x}, \hat{y}, z) + c : (z, c) \in \Gamma(\hat{x}) \times \operatorname{Int} C \}$$

is convex. Indeed, taking any $u, v \in Q$, we have $u = f(\hat{x}, \hat{y}, z_1) + c_1$ and $v = f(\hat{x}, \hat{y}, z_2) + c_2$ for some $(z_1, c_1), (z_2, c_2) \in \Gamma(\hat{x}) \times \text{Int}C$. Hence for each $t \in [0, 1], tu + (1-t)v = tf(\hat{x}, \hat{y}, z_1) + (1-t)f(\hat{x}, \hat{y}, z_2) + tc_1 + (1-t)c_2$. Since $f(\hat{x}, \hat{y}, \cdot)$ is C-strongly convex, $tf(\hat{x}, \hat{y}, z_1) + (1-t)f(\hat{x}, \hat{y}, z_2) = f(\hat{x}, \hat{y}, tz_1 + (1-t)z_2) + c_3$ for some $c_3 \in \text{Int}C \cup \{0\}$. Consequently,

$$tu + (1-t)v = f(\hat{x}, \hat{y}, tz_1 + (1-t)z_2) + c,$$

where $c := tc_1 + (1 - t)c_2 + c_3 \in \text{Int}C$. This implies that $tu + (1 - t)v \in Q$. Thus Q is a convex set. According to the separation theorem of convex sets (see [14, Theorem 1, p. 163]), there exists a nonzero functional ξ such that

$$\langle \xi, f(\hat{x}, \hat{y}, z) + c \rangle \ge \langle \xi, u \rangle$$

for all $(z,c) \in \Gamma(\hat{x}) \times \text{Int}C$ and $u \in -\text{Int}C$. This implies that $\xi \in C_+^*$ and

$$\langle \xi, f(\hat{x}, \hat{y}, z) \rangle \ge 0 \ \forall z \in \Gamma(\hat{x}).$$

Hence $(\hat{x}, \hat{y}) \in \text{Sol}(P_{\xi})$ and so $\text{Sol}(P) \subseteq \bigcup_{\xi \in C_{+}^{*}} \text{Sol}(P_{\xi})$. Combining this with (9), we obtain the desired conclusion. The proof is complete. \Box

Lemma 3.1 suggests us that in order to prove the solution existence of problem (P) it is necessary to prove the solution existence of (P_{ξ}) for some $\xi \in C_{+}^{*}$. By this way we obtain the following existence result for the case of finite dimensional spaces.

Theorem 3.1 Let $X = R^m$, K be a closed convex set in X, K_0 be a nonempty bounded set in K and D be a nonempty set in Y. Let $\Gamma : K \to 2^K$, $\Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to R^n$ be a singlevalued mapping. Assume that there exists $\xi \in C^*_+$ such that the following conditions are fulfilled:

(i) Γ is l.s.c. with nonempty convex values on K and the set $M = \{x \in K : x \in \Gamma(x)\}$ is closed;

(ii) the set $\Phi(x)$ is nonempty, compact for each $x \in K$ and convex for each $x \in M$;

(iii) for each $z \in K$, the set $\{x \in M \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\}$ is closed;

(iv) for each $x \in M$, the set $\{z \in K \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\}$ is closed;

(v) for each $x \in M$ and for each $y \in \Phi(x)$ such that f(x, y, x) = 0;

(vi) for each $x \in M$ and $y \in \Phi(x)$, the function f(x, y, .) is C-convex and l.s.c.;

(vii) for each $x \in M$ and $z \in \Gamma(x)$, the function f(x, ., z) is C-concave and u.s.c.;

(viii) $\Gamma(x) \cap K_0 \neq \emptyset$ for all $x \in K$, for each $x \in M \setminus K_0$ there exists $z \in \Gamma(x) \cap K_0$ such that $f(x, y, z) \in -\text{Int}C$ for all $y \in \Phi(x)$.

Then there exists $\hat{x} \in \Gamma(\hat{x})$ such that

$$\max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle \ge 0 \ \forall z \in \Gamma(\hat{x})$$
(10).

Moreover there exists $\hat{y} \in \Phi(\hat{x})$ such that (\hat{x}, \hat{y}) is a solution of $P(K, \Gamma, f, \Phi)$.

Proof. Take r > 0 such that $K_0 \subset \operatorname{int} B_r$ where B_r is the closed ball in \mathbb{R}^m with radius r and center at 0. We put $\Omega_r = K \cap B_r$ and define the multifunction $\Gamma_r : \Omega_r \to 2^{\Omega_r}$ by $\Gamma_r(x) = \Gamma(x) \cap B_r$ and $\phi : K \times D \times K \to R$ by $\phi(x, y, z) = \langle \xi, f(x, y, z) \rangle$. According to Lemma 3.1 in [34], Γ_r is l.s.c. on Ω_r . Put

$$\Phi_r = \Phi \mid_{\Omega_r}, \phi_r = \phi \mid_{\Omega_r \times D \times \Omega_r}.$$

By (vi) and Lemma 2.1, $\phi(x, y, \cdot)$ is convex and l.s.c. Also, $\phi(x, \cdot, z)$ is concave and u.s.c. Hence the components $\Omega_r, \Gamma_r, \Phi_r$ and ϕ_r meet all conditions of Lemma 2.2. By this lemma, there exists $(\hat{x}, \hat{y}) \in \Gamma_r(\hat{x}) \times \Phi_r(\hat{x})$ such that

$$\phi_r(\hat{x}, \hat{y}, z) \ge 0 \ \forall z \in \Gamma_r(\hat{x}).$$

Since $\Phi_r(\hat{x}) = \Phi(\hat{x})$ and $\phi_r(\hat{x}, \hat{y}, z) = \phi(\hat{x}, \hat{y}, z)$ we get

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), \phi(\hat{x}, \hat{y}, z) \ge 0 \ \forall z \in \Gamma_r(\hat{x}).$$
(11)

We now claim that

$$\phi(\hat{x}, \hat{y}, z) \ge 0 \ \forall z \in \Gamma(\hat{x}).$$
(12)

In fact, from (viii) we get $\hat{x} \in K_0$. Take any $z \in \Gamma(\hat{x})$ then $(1-t)\hat{x} + tz \in \Gamma(\hat{x}) \cap B_r$ for a sufficiently small $t \in (0, 1)$. Hence (11) implies

$$\phi(\hat{x}, \hat{y}, (1-t)\hat{x} + tz) \ge 0.$$

By (vi) and Lemma 2.1 we have

$$0 \le \phi(\hat{x}, \hat{y}, t\hat{x} + (1-t)z) \le t\phi(\hat{x}, \hat{y}, \hat{x}) + (1-t)\phi(\hat{x}, \hat{y}, z)$$

= 0 + (1-t)\phi(\hat{\hat{x}}, \hat{\hat{y}}, z).

This implies (12). It is obvious that (12) implies (10). ξ From (12) and Lemma 3.1, we have

$$\{f(\hat{x}, \hat{y}, z) : z \in \Gamma(\hat{x})\} \cap (-\operatorname{Int} C) = \emptyset.$$

Consequently, (\hat{x}, \hat{y}) is a solution of the problem. The proof is complete. \Box

When $C = R_{+}^{n} := \{(x_1, x_2, \dots, x_n) \in R^n : x_i \ge 0, i = 1, 2, \dots, n\}$ then $C^* = C$ and $\operatorname{Int} C = \{(x_1, x_2, \dots, x_n) \in R^n : x_i > 0, i = 1, 2, \dots, n\}$. In this case we have

Corollary 3.1 Let $X = R^m$, K be a closed convex set in X, K_0 be a nonempty bounded set in K and D be a nonempty set in Y. Let $\Gamma : K \to 2^K$, $\Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to R^n$ be a singlevalued mapping. Assume that there exists an index $i, 1 \le i \le n$ such that the following conditions are fulfilled:

(i) Γ is l.s.c. with nonempty convex values on K and the set $M = \{x \in K : x \in \Gamma(x)\}$ is closed;

(ii) the set $\Phi(x)$ is nonempty, compact for each $x \in K$ and convex for each $x \in M$;

(iii) for each $z \in K$, the set $\{x \in M \mid \sup_{y \in \Phi(x)} f_i(x, y, z) \ge 0\}$ is closed;

(iv) for each $x \in M$, the set $\{z \in K \mid \sup_{y \in \Phi(x)} f_i(x, y, z) \ge 0\}$ is closed;

(v) for each $x \in M$ and for each $y \in \Phi(x)$ such that f(x, y, x) = 0;

(vi) for each $x \in M$ and $y \in \Phi(x)$, the function f(x, y, .) is C-convex and l.s.c.;

(vii) for each $x \in M$ and $z \in \Gamma(x)$, the function f(x, .., z) is C-concave and u.s.c.

(viii) $\Gamma(x) \cap K_0 \neq \emptyset$ for all $x \in K$, for each $x \in M \setminus K_0$ there exists $z \in \Gamma(x) \cap K_0$ such that $f(x, y, z) \in -\text{Int}C$ for all $y \in \Phi(x)$.

Then problem $P(K, \Gamma, f, \Phi)$ has a solution $(\hat{x}, \hat{y}) \in K_0 \times D$.

Proof. For the proof we put $\xi = (0, 0, \dots, \xi_i, \dots, 0, 0)$, where ξ_i is the *i*th component of ξ and $\xi_i = 1$. It easy to see that $\xi \in C^*_+$ and conditions of Theorem 3.1 are satisfied. The conclusion follows directly from Theorem 3.1.

Let us give an illustrative example for Theorem 3.1.

Example 3.1 Let X = R, $K = [0, 1] \subset X$, Y = R, D = [1, 4] and $C = R_+^2 = \{(x, y) \mid x \ge 0, y \ge 0\}.$

Let Γ , Φ and f be defined by:

$$\Gamma(x) = \begin{cases} \{0\} & \text{if } x = 0\\ (0,1] & \text{if } 0 < x \le 1, \end{cases}$$

$$\Phi(x) = \begin{cases} [2,4] & \text{if } x = 0\\ \{1\} & \text{if } 0 < x \le 1 \end{cases}$$

 $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z)),$ where $f_1(x, y, z) = y(z^2 - x^2),$ $f_2(x, y, z) = y(z^4 - x^4).$ Then the set $\{0\} \times [2, 4]$ is a solution set of $P(K, \Gamma, \Phi, f).$ Moreover Φ is not upper semicontinuous on [0, 1].

Indeed, by putting $\xi = (1,0)$ (i = 1), we see that all conditions of Theorem 3.1. are fulfilled. Taking $\hat{x} = 0$ and $\hat{y} \in \Phi(0) = [2,4]$ we have $0 \in \Gamma(0)$ and

$$f(0, \hat{y}, z) = (0, 0) \notin -\operatorname{Int} C \ \forall z \in \Gamma(0).$$

Hence the set $\{0\} \times [2, 4]$ is a solution set of the problem. Since $x_n = 1/n \to 0$ and $y_n = 1 \in \Phi(x_n)$ but $1 \notin \Phi(0)$, Φ is not u.s.c. at x = 0.

In the rest of this section we shall derive some existence results for the case of infinite dimensional spaces.

Theorem 3.2 Let X be a Banach space, K be a closed convex set of X and D be a nonempty set in Y. Let $\Gamma : K \to 2^K$, $\Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to R^n$ be a single-valued mapping. Let K_1, K_2 be two nonempty compact sets of K such that $K_1 \subset K_2$, K_1 is finite dimensional and $\xi \in C^*_+$. Assume that:

(i) Γ is Hausdorff l.s.c. with nonempty closed graph and convex values;

(ii) the set $\Phi(x)$ is nonempty, compact for each $x \in K$ and convex for each $x \in \Gamma(x)$;

(iii) for each $z \in K$, the set $\{x \in K \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\}$ is compactly closed;

(iv) for each $x \in K$, the set $\{z \in K \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\}$ is finitely closed;

(v) for each $x \in K$ and for each $y \in \Phi(x)$ such that f(x, y, x) = 0;

(vi) for each $x \in K$ and $y \in \Phi(x)$, the function f(x, y, .) is C-convex and l.s.c.;

(vii) for each $x \in K$ and $z \in \Gamma(x)$, the function f(x, .., z) is C-concave and u.s.c.

(viii) $\operatorname{Int}_{\operatorname{aff}(K)}\Gamma(x) \neq \emptyset;$

(iv) $\Gamma(x) \cap K_1 \neq \emptyset$ for all $x \in K$. Moreover for each $x \in K \setminus K_2$ with $x \in \Gamma(x)$ there exists $z \in \Gamma(x) \cap K_1$ such that $f(x, y, z) \in -\text{Int}C$ for all $y \in \Phi(x)$.

Then there exists a pair $(\hat{x}, \hat{y}) \in K_2 \times D$ which solves $P(K, \Gamma, \Phi, f)$.

Proof. The proof is based on the scheme given by [10].

Let $L = \operatorname{aff}(K)$ and L_0 be the linear subspace corresponding to L. For each $x \in \overline{\operatorname{co}}K_2$, there exists $z_x \in \operatorname{Int}_L\Gamma(x)$, the interior of $\Gamma(x)$ in L which is nonempty by (viii).

The following lemma plays an important role in our arguments.

Lemma 3.2 ([9], Proposition 2.5) Let T be a topological space, X be a nomerd space, L be an affine manifold of X, $\Gamma : T \to 2^{L}$ a Hausdorff lower semicontinuous multifunction with nonempty closed convex values, and $\overline{x} \in X$, $\overline{y} \in Int_{L}(\Gamma(\overline{x}))$. Then there exists a neighborhood U of \overline{x} such that $\overline{y} \in Int_{L}(\Gamma(x))$ for all $x \in U$.

By Lemma 3.2, there exists a neighborhood U_x of x in X such that $z_x \in \text{Int}_L \Gamma(u)$ for all $u \in U_x \cap K$. Since $\overline{\text{co}}K_2$ is a compact set and

$$\overline{\operatorname{co}}K_2 \subset \bigcup_{x \in \overline{\operatorname{co}}K_2} (U_x \cap L),$$

then there exists $x_1, x_2, ..., x_m \in \overline{\operatorname{co}} K_2$ such that

$$\overline{\mathrm{co}}K_2 \subset \bigcup_{i=1}^m [U_{x_i} \cap L]$$

Putting

$$P_0 = \bigcup_{i=1}^m (U_{x_i} \cap L)$$

then $P_0 \subset L$. Since $L \setminus P_0 \neq \emptyset$ and closed in L, then

$$\xi := \inf\{d(a, L \setminus P_0) : a \in \overline{\operatorname{co}} K_2\} > 0.$$

Putting

$$P = \overline{\operatorname{co}}K_2 + (\overline{B}(0,\xi/2) \cap L_0)$$

we have that P is a closed convex set in L and $P \subset P_0$.

Let \mathcal{F} be the family of all finite-dimensional linear subspaces of X containing $K_1 \cup \{z_{x_1}, z_{x_2}, ..., z_{x_n}\}$. Fix $S \in \mathcal{F}$ and put

$$\Omega = \overline{K \cap P \cap S}, \ K_0 = K_2 \cap \Omega.$$

Note that $K_1 \subset K \cap P \cap S \subset \Omega \subset K \cap S$.

We next define the multifunction $\Gamma_S : \Omega \to 2^{\Omega}$ by setting

$$\Gamma_S(x) := \Gamma(x) \cap \Omega = G(x) \cap \overline{K \cap P \cap S}$$

Put

$$\Phi_S = \Phi \mid_{\Omega}, \ f_S = f \mid_{\Omega \times D \times \Omega}, \ M_S = \{ x \in \Omega : x \in \Gamma_S(x) \}.$$

The task is now to check that Theorem 3.1 can be applied to the problem $P(\Omega, \Gamma_S, \Phi_S, f_S)$ where Ω plays a role as K in Theorem 3.1. To do this we need

Lemma 3.3 ([8], Lemma 3.3) The multifunction $\Gamma_S : \Omega \to 2^{\Omega}$ is lower semicontinuous on Ω in the relative topology of S.

 (a_1) It is easy to see that Γ_S has a closed graph. Since

$$M_S = \{ x \in \Omega : x \in \Gamma_S(x) \} = \Omega \cap \{ x \in K : x \in \Gamma(x) \},\$$

 M_S is closed in S. Therefore condition (i) of Theorem 3.1 is satisfied.

 (a_2) Condition (ii) is automatically satisfied.

 (a_3) For each $z \in \Omega$ we get

$$\{x \in M_S \mid \sup_{y \in \Phi_S(x)} \langle \xi, f_S(x, y, z) \rangle \ge 0\} =$$
$$\{x \in K \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\} \cap M_S$$

which is closed by (iii)(taking into account M_S is closed, $M_S \subset S$, S is finite-dimensional). Hence condition (iii) of Theorem 3.1 is satisfied.

 (a_4) For each $x \in M_S$, we have

$$\{ x \in \Omega \mid \sup_{y \in \Phi_S(x)} \langle \xi, f_S(x, y, z) \rangle \ge 0 \} =$$

$$\{ x \in K \mid \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0 \} \cap \Omega$$

This implies that condition (iv) of Theorem 3.1 is also satisfied.

 (a_5) The conditions (v), (vi), (vii) of Theorem 3.2 are automatically fulfilled.

(a₆) Finally for each $x \in M_S \setminus K_0$, then $x \in K \setminus K_2$ and $x \in \Gamma(x)$. By condition (iv) there exists $z \in \Gamma(x) \cap K_1 \subset \Gamma_S(x)$ such that $f(x, y, z) = f_S(x, y, z) \in$ -IntC for all $y \in \Phi_S(x)$. Therefore condition (viii) of Theorem 3.1 is valid.

Thus all conditions of Theorem 3.1 are fulfilled. By Theorem 3.1, there exists $\hat{x}_S \in \Gamma_S(\hat{x}_S)$ such that

$$\max_{y \in \Phi_S(\hat{x}_S)} \langle \xi, f_S(\hat{x}_S, y, z) \rangle \ge 0 \ \forall z \in \Gamma_S(\hat{x}_S).$$

Since $f_S(\hat{x}_S, y, z) = f(\hat{x}_S, y, z), \Phi_S(\hat{x}_S) = \Phi(\hat{x}_S)$ we get

$$\max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, z) \rangle \ge 0 \ \forall z \in \Gamma \hat{x}_S) \cap \Omega.$$
(13)

We now show that

$$\max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, z) \rangle \ge 0 \ \forall z \in \Gamma(\hat{x}_S) \cap S.$$
(14)

In fact, we fix any $z \in \Gamma(\hat{x}_S) \cap S$. Since

$$\hat{x}_S \in K_2 \subset \overline{\operatorname{co}} K_2 \subset K \subset L, z \in \Gamma(\hat{x}_S) \subset K \subset L, L - L \subset L_0,$$

we have

$$\hat{x}_S + t(z - \hat{x}_S) \in K \cap [\overline{\operatorname{co}}K_2 + \overline{B}(0, \xi/2) \cap L_0] = K \cap P$$

for a sufficiently small $t \in (0, 1)$. By the convexity of $\Gamma(\hat{x}_S) \cap S$ we get

$$\hat{x}_S + t(z - \hat{x}_S) \in K \cap P \cap S \cap \Gamma(\hat{x}_S) \subset \Omega \cap \Gamma(\hat{x}_S).$$

Hence (13) implies

$$\max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, \hat{x}_S + t(z - \hat{x}_S)) \rangle \ge 0.$$
(15)

By (iv) and using the similar argument as in the proof of Theorem 3.1, (15) implies

$$\max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, z) \rangle \ge 0.$$

Hence we obtained (14). We now consider the net $\{\hat{x}_S\}_{s\in\mathcal{F}}$, where \mathcal{F} is ordered by the ordinary set inclusion \supseteq . By the compactness of K_2 we can assume that $\hat{x}_S \to \hat{x} \in K_2$. Since Γ has a closed graph, $\hat{x} \in \Gamma(\hat{x})$.

The following lemma will complete the proof of Theorem 3.2.

Lemma 3.4

$$\max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle \ge 0 \ \forall \ z \in Int_L \Gamma(\hat{x}).$$
(16)

Proof. On the contrary, suppose that there exists $\hat{z} \in \text{Int}_L \Gamma(\hat{x})$ such that

$$\max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, \hat{z}) \rangle < 0.$$
(17)

By Lemma 3.2 there exists $\delta > 0$ such that

$$\hat{z} \in \operatorname{Int}_L \Gamma(x) \ \forall x \in B(\hat{x}, \delta) \cap K.$$
 (18)

It also follows from (17) that

$$\hat{x} \in \{x \in K \mid \max_{y \in \Phi(x)} \langle \xi, f(x, y, \hat{z}) \rangle < 0.\}$$

which is open set by (iii). Therefore there exists $\alpha \in (0, \delta)$ such that

$$\max_{y \in \Phi(x)} \langle \xi, f(x, y, \hat{z}) \rangle < 0 \ \forall x \in B(\hat{x}, \alpha) \cap K.$$
(19)

Since $\hat{x}_S \to \hat{x}$, there exists $S_0 \in \mathcal{F}$ such that $\hat{x}_S \in B(\hat{x}, \alpha)$ for all $S \supseteq S_0$. So we can choose $S \in \mathcal{F}$ satisfying $\hat{z} \in S$ and $\hat{x}_S \in B(\hat{x}, \alpha)$. Combining this with (18), we obtain $\hat{z} \in \Gamma(\hat{x}_S) \cap S$. Hence it follows from (14) that

$$\hat{x}_S \in \Gamma(\hat{x}_S), \ \max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, \hat{z}) \rangle \ge 0.$$
 (20)

On the other hand, (19) implies that

$$\hat{x}_S \in \Gamma(\hat{x}_S), \ \max_{y \in \Phi(\hat{x}_S)} \langle \xi, f(\hat{x}_S, y, \hat{z}) \rangle < 0$$

which contradicts to (20). The lemma is proved.

We now take any $z \in \Gamma(\hat{x}) \subset L$. Since $\Gamma(\hat{x})$ is a closed convex set in X, $\Gamma(\hat{x})$ is a closed convex set in L which is the closure of $\operatorname{Int}_L\Gamma(\hat{x})$ in L (see [2] Theorem 2, pp. 19). Hence there exists a sequence $z_n \in \operatorname{Int}_L\Gamma(\hat{x})$ such that $z_n \to z$. By Lemma 3.4 we have

$$\max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, z_n) \rangle \ge 0.$$

By letting $n \to \infty$ and using assumption (iv) yields

$$\max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle \ge 0 \ \forall \ z \in \Gamma(\hat{x}).$$

Hence

$$\inf_{z \in \Gamma(\hat{x})} \max_{y \in \Phi(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle \ge 0$$

By the minimax theorem (see [1, Theorem 5]) we have

$$\max_{y \in \Phi(\hat{x})} \inf_{z \in \Gamma(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle \ge 0.$$

Since the function $y \mapsto \inf_{z \in \Gamma(\hat{x})} \langle \xi, f(\hat{x}, y, z) \rangle$ is u.s.c., there exists a point $\hat{y} \in \Phi(\hat{x})$ such that

$$\inf_{z\in\Gamma(\hat{x})}\langle\xi, f(\hat{x}, \hat{y}, x)\rangle = \max_{y\in\Phi(\hat{x})} \inf_{z\in\Gamma(\hat{x})}\langle\xi, f(\hat{x}, y, z)\rangle \ge 0.$$

This implies that

$$\langle \xi, f(\hat{x}, \hat{y}, z) \rangle \ge 0 \ \forall z \in \Gamma(\hat{x}).$$

By Lemma 3.1, (\hat{x}, \hat{y}) is a solution of the problem. The proof is complete. \Box

For the scalar case we have

Corollary 3.2 ([10], Theorem 1.2) Let X be a real Banach space, let K be a closed convex subset of X, let $\Gamma : K \to 2^K$ and $\Phi : K \to 2^{X^*}$ be two multifunctions. Let K_1, K_2 be two nonempty compact subsets of K such that $K_1 \subset K_2$ and K_1 is finite-dimensional. Assume that:

(i) the set $\Phi(x)$ is nonempty, weakly-star compact for each $x \in K$, and convex for each $x \in K$, with $x \in \Gamma(x)$;

(ii) for each $z \in K$, the set $\{x \in K : \inf_{y \in \Phi(x)} \langle y, x - z \rangle \leq 0\}$ is compactly closed;

(iii) the multifunction Γ is Hausdorff l.s.c. with closed graph and convex values;

(iv) $\Gamma(x) \cap K_1 \neq \emptyset$ for all $x \in X$;

(v)
$$int_{aff(K)}(\Gamma(x)) \neq \emptyset$$
 for all $x \in K$;

(vi) for each $x \in K \setminus K_2$, with $x \in \Gamma(x)$, one has

$$\sup_{y \in \Gamma(x) \cap K_1} \inf_{y \in \Phi(x)} \langle y, x - z \rangle > 0.$$

Then there exists $(\hat{x}, \hat{y}) \in K_2 \times X^*$ such that

$$\hat{x} \in \Gamma(\hat{x}), \ \hat{y} \in \Phi(\hat{x}) \ and \ \langle \hat{y}, \hat{x} - z \rangle \le 0 \ \forall z \in \Gamma(\hat{x}).$$

Proof. For the proof we put $f(x, y, z) = \langle y, z - x \rangle$, $D = Y = X^*$, Z = Rand $C = \{x \in R \mid x \ge 0\}$. Then we have $C^* = C$ and $C^*_+ = \{u \in R \mid u > 0\}$. Choose $\xi = 1$. We want to verify conditions of Theorem 3.2. It easily seen that f meets all conditions of Theorem 3.2. Since $\Phi(x)$ is a compact set, for each $z \in K$ we have

$$\begin{aligned} &\{x \in K \mid \inf_{y \in \Phi(x)} \langle y, x - z \rangle \le 0\} = \{x \in K \mid \min_{y \in \Phi(x)} \langle y, x - z \rangle \le 0\} = \\ &= \{x \in K \mid \max_{y \in \Phi(x)} \langle y, z - x \rangle \ge 0\} \end{aligned}$$

which is a compactly closed set. Moreover for each $x \in K$, the set

$$\{z \in K : \inf_{y \in \Phi(x)} \langle y, x - z \rangle \le 0\}$$

is also closed and satisfies

$$\begin{split} &\{z \in K \mid \inf_{y \in \Phi(x)} \langle y, x - z \rangle \leq 0\} = \{z \in K \mid \min_{y \in \Phi(x)} \langle y, x - z \rangle \leq 0\} = \\ &= \{z \in K \mid \max_{y \in \Phi(x)} \langle y, z - x \rangle \geq 0\}. \end{split}$$

Therefore conditions (iii) and (iv) of Theorem 3.2 are valid.

Finally, (vi) implies that for each $x \in K \setminus K_2$ there exists $z \in \Gamma(x) \cap K_1$ such that $f(x, y, z) \in -\text{Int}C$ for all $y \in \Phi(x)$. Thus all conditions of Theorem 3.2 are fulfilled. The conclusion now follows directly from Theorem 3.2. \Box

Remark 3.1 In the proof of Theorem 3.2 we used Lemma 3.2 as a main tool for the arguments. In the infinite-dimensional setting, in general, a lower semicontinuous multifunction has no property described in Lemma 3.2, even if X is an Hilbert space; see remark 3.1 of [9] and the references given there.

The following theorem deals with the case where Γ is not Hausdorff lower semicontinuous and condition $\operatorname{Int}_{\operatorname{aff}(K)}\Gamma(x) \neq \emptyset$ can be omitted.

Theorem 3.3 Let X be a normed space, K be a closed convex set of X and D be a nonempty set in Y. Let $\Gamma : K \to 2^K$, $\Phi : K \to 2^D$ be two multifunctions and $f : K \times D \times K \to R^n$ be a single-valued mapping. Let K_1, K_2 be two nonempty compact sets of K such that $K_1 \subset K_2$, K_1 is finite dimensional. Assume that there exists $\xi \in C^*_+$ and $\eta > 0$ such that the following conditions are fulfilled:

(i) Γ is l.s.c. with closed convex values and Hausdorff upper semicontinous;

(ii) the set $\Phi(x)$ is nonempty, compact for each $x \in K$ and convex for each x with $d(x, \Gamma(x)) < \eta$;

(iii) the set $\{(x, z) \in K \times K : \sup_{y \in \Phi(x)} \langle \xi, f(x, y, z) \rangle \ge 0\}$ is closed;

(iv) for each $x \in K$ there exists $y \in \Phi(x)$ such that f(x, y, x) = 0;

(v) for each $x \in K$ and $y \in \Phi(x)$, the function f(x, y, .) is C-convex and l.s.c.;

(vi) for each $(x, z) \in K \times K$, the function f(x, .., z) is C-concave and u.s.c.;

(vii) $\Gamma(x) \cap K_1 \neq \emptyset$ for all $x \in K$. Moreover for each $x \in K \setminus K_2$ with $d(x, \Gamma(x)) < \eta$ there exists $z \in \Gamma(x) \cap K_1$ such that $f(x, y, z) \in -\text{Int}C$ for all $y \in \Phi(x)$.

Then there exists a pair $(\hat{x}, \hat{y}) \in K \times D$ which solves $P(K, \Gamma, \Phi, f)$.

Proof. Define a mapping $\phi: K \times D \times K \to R$ by putting

$$\phi(x, y, z) = \langle \xi, f(x, y, z) \rangle$$

We now apply a existence result of problem (2) to $P_{\xi}(K, \Gamma, \Phi, \phi)$. By Theorem 3.3 in [18], there exists $(\hat{x}, \hat{y}) \in K \times D$ such that

$$(\hat{x}, \hat{y}) \in \Gamma(\hat{x}) \times \Phi(\hat{x}), \phi(\hat{x}, \hat{y}, z) \ge 0 \ \forall z \in \Gamma(\hat{x}).$$

By lemma 3.1, (\hat{x}, \hat{y}) is a solution of $P(K, \Gamma, \Phi, f)$.

Remark 3.2 In Theorem 3.1 and Theorem 3.2, conditions (iii) and (iv) are verified via a functional $\xi \in C_+^*$. One of main difficulties is to find such functionals. Under certain conditions, says, if D is compact, Φ is upper semicontinuous and the function $(x, y) \mapsto f(x, y, z)$ is C- upper continuous, then we can choose any $\xi \in C_+^*$. However example 2.1 revealed that although Φ is not u.s.c., there exists $\xi \in C_+^*$ under which conditions (iii) and (iv) are fulfilled. Besides, Lemma 2.1 showed that under suitable conditions the solution existence of P_{ξ} is necessary for the solution existence of (P). It is natural to know if we can prove the solution existence of (P) without P_{ξ} . Namely, one may ask whether the conclusion of Theorem 3.1 and Theorem 3.2 are still valid if conditions (iii) and (iv) are replaced by the following conditions:

(iii)' for each $z \in K$, the set $\{x \in M \mid \exists y \in \Phi(x), f(x, y, z) \notin -\text{Int}C\}$ is closed;

(iv)' for each $x \in M$, the set $\{z \in K \mid \exists y \in \Phi(x), f(x, y, z) \notin -\text{Int}C\}$ is closed.

Acknowledgements. The first author wishes to thank Professor Manuel D.P. Monterio Marques for his help.

References

- 1. Aubin, J.P.: Mathematical Methods of Game and Economic Theory, Amsteredam, 1979.
- Aubin, J.P and Cellina, A.: Differential Inclusions., Springer-Verlag, 1984.
- Bianchi, M., Hadjisavvas, N. and Shaible, S.: Vector equilibrium problems with generalzed Monotone bifunctions, J. Optim. Theory Appl. bf 92 (1997), pp. 527-452.
- 4. Blum, E. and Oettli, W.: From optimization and variational inequalities to equilibrium problems, *The Math. Stud.* **63** (1996), 123-145.
- Chan, D. and Pang, J.S.: The generalized quasi-variational inequality problem, *Math. Oper. Res.* 7 (1982), 211-222.

- 6. Chiang, Y., Chadli, O. and Yao, J.C.: Genneralized vector equilibrium problems with trifunction, J. Global Optim. **30** (2004), 135-154.
- Chiang, Y., Chadli, O. and Yao, J.C.: Existence of solution to implicit vector variational inequalities, *J. Optim. Theory. Appl.* **116** (2003) 251-264.
- Cubiotti, P. and Yen, N.D.: A results related to Ricceri's conjecture on generalized quasivariational inequalities, *Archiv der Math.* 69 (1997) 507-514.
- Cubiotti, P.: On the discontinuous infinite-dimensional generalized quasivariational inequality problem, J. Optim. Theory Appl. 115 (2002), 97-111.
- Cubiotti, P.: Existence theorem for the discontinuous generalized quasivariational inequality problem, J. Optim. Theory Appl. 119 (2003), 623-633.
- Cubiotti, P. and Yao, J.C.: Discontinuous implicit quasi-variational inequalities with applications to fuzzy mappings, *Math. Method Oper. Res.* 46 (1997), 213-328.
- 12. Cubiotti, P. and Yao, J.C.: Discontinuous implicit generalized quasivariational inequalities in Banach spaces, submitted for publication 2005.
- Hou, S.H., Yu, H. and Chen, G.Y.: On vector quasi-equilibrium problems with set-valued maps, J. Optim. Theory Appl. 119 (2003), pp.485-498.
- 14. Ioffe, A.D. and Tihomirov, V.M.: *Theory of Extremal problems*, North-Holland, 1979.
- Jeyakumar, V., Oettli, W. and Natividad, M.: A solvability Theorem for a Class of Quasiconvex mappings with Applications to Optimization, J. Math. Anal. Appl. **179** (1993), 537-546.
- 16. Kinderlehrer, D. and Stampacchia, G.: An Introduction to Variational Inequalities and Theire Applications, Academic Press, 1980.
- Kien, B.T., Wong, N. C. and Yao, J.C.: On the solution existence of generalized quasivariational inequalities with discontinuous mappings, *J. Optim. Theory Appl.*, accepted for publication.

- 18. Kien, B.T., Wong, N. C. and Yao, J.C.: On the solution existence of implicit generalized quasivariational inequalities with discontinuous mappings, *Optimization*, accepted for publication.
- Lee. G. M., Kim, D. S. Lee, B. S. and Yen N. D.: Vector variational inequality as a tool for studying vector optimization problems, *Non. Anal.* 34, (1998), 745-765.
- Lunsford, M.L.: generalized variational and quasivariational Inequality with discontinuous operator, J. Math. Anal. Appl. 214, (1997). 245-263.
- 21. Luc, D.T.: Theory of Vector Optimization, Springer, Berlin, 1989.
- 22. Michael, E.: Continuous selection I, Ann. of Math. 63 (1956), 361-382.
- 23. Monterio Marques, M.D.P.: Rafle par un convexe semi-continu inferieurement d'interieur non vide dimension finie, Expose No 6, Seminaire d'analyse convexe, Montepllier, France, 1984.
- 24. Oettli, W.: A remark on vector-valued equilibria and generalized monotonicity, *Acta Math. Vietnamica* **22** (1997), 213-221.
- Ricceri, O.N.: On the covering dimension of the fixed point set of certain multifunctions, *Comment Math. Univ. Carolinae* **32** (1991) 281-286.
- 26. Schaible, S. and Yao, J.C.: On the equivalence of nonlinear complementarity problem and least element problems, *Math. Prog.* **70** (1995) 191-200.
- Tanaka, T.: Generalized semicontinuity and existence theorems for Cone saddle point, Appl. Math. Optim. 36 (1997) 313-322.
- Tuan, P.A. and Sach, P.H.: Existence of solutions of generelized quasivariational inequalities with set-valued Maps, *Acta Math. Vienamica* 29 (2004) 309-316.
- Yao, J.C. and Guo, J.S.: Variational and generalized variational inequalitieties with discontinuous mappings, J. Math. Anal. Appl. 182 (1994) 371-382.
- 30. Yao, J.C.: Generalized quasivariational Inequalitiety problems with discontinuous mappings, *Math. Oper. Res.* **20**, (1995) 465-478.
- Yao, J.C. and Guo, J.S.: Extension of strongly nonlinear quasivariational inequalities, Appl. Math. Lett. 5 (1992), 35-38.

- Yao, J.C.: Variational inequalities with generalized monotone operators, Math. Oper. Res. 19 (1994), 691-705.
- 33. Yen, N.D.: On an existence theorem for generalized quasivariational inequalities, *Set-Valued Anal.* **3** (1995), 1-10.
- 34. Yen, N.D.: On a class of discontinuous vector-valued functions and the associated quasivariational inequalities, *Optim.* **30** (1994), 197-202.
- 35. Zeidler, E.: Nonlinear Functional Analysis and Its Application, II/B: Nonlinear Monotone Operators, Springer-Verlag, 1990.