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Abstract. In this paper, we first prove a general fixed point theorem for
nonlinear mappings in a Banach space. Then we prove a nonlinear mean
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of Mann’s type for 2-generalized nonspreading mappings in a Banach
space.

Mathematics Subject Classification (2010). Primary 47H10; Secondary
47H05.

Keywords. Banach space, nonexpansive mapping, nonspreading map-
ping, hybrid mapping, fixed point.

1. Introduction

Let E be a real smooth Banach space and let J be the duality mapping of E.
Let C be a nonempty closed convex subset of E. Let T be a mapping of C
into itself. Then we denote by F (T ) the set of fixed points of T . Recently,
Kohsaka and Takahashi [14] introduced the following nonlinear mapping: A
mapping T : C → C is said to be nonspreading if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(x, Ty) + φ(y, Tx)

for all x, y ∈ C, where

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E; see also [13]. Such a mapping is deduced from the resolvent of
a maximal monotone operator in a Banach space; see [14, 27, 23]. A non-
spreading mapping defined by [14] is as follows in a Hilbert space: Let H be
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a real Hilbert space and let C be a nonempty closed convex subset of H. A
mapping T : C → C is said to be nonspreading [14] if

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2 (1.1)

for all x, y ∈ C. Takahashi [22] also defined another nonlinear mapping in a
Hilbert space: A mapping T : C → C is said to be hybrid [22] if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖Ty − x‖2 (1.2)

for all x, y ∈ C. Furthermore, we know that a mapping T : C → C is said to
be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C; see [4, 21]. The classes of nonexpansive mappings, nonspread-
ing mappings and hybrid mappings in a Hilbert space are deduced from the
class of firmly nonexpansive mappings; see [22]. A mapping F : C → C is
said to be firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉
for all x, y ∈ C; see [3, 4]. Recently, Kocourek, Takahashi and Yao [10] intro-
duced a class of nonlinear mappings called generalized hybrid containing the
classes of nonexpansive mappings, nonspreading mappings and hybrid map-
pings in a Hilbert space: A mapping T : C → C is called generalized hybrid
[10] if there exist α, β ∈ R such that

α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2
for all x, y ∈ C. Kocourek, Takahashi and Yao [11] also extended the class of
generalized hybrid mappings in a Hilbert space to Banach spaces: Let E be
a smooth Banach space and let C be a nonempty closed convex subset of E.
Then a mapping T : C → C is called generalized nonspreading if there exist
α, β, γ, δ ∈ R such that

αφ(Tx, Ty) + (1− α)φ(x, Ty) + γ
{
φ(Ty, Tx)− φ(Ty, x)

}
≤ βφ(Tx, y) + (1− β)φ(x, y) + δ

{
φ(y, Tx)− φ(y, x)

} (1.3)

for all x, y ∈ C. Very recently, Maruyama, Takahashi and Yao [16] introduced
a broad class of nonlinear mappings containing the class of generalized hybrid
mappings defined by [10] in a Hilbert space: A mapping T : C → C is called
2-generalized hybrid if there exist α1, α2, β1, β2 ∈ R such that

α1‖T 2x− Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2
≤ β1‖T 2x− y‖2 + β2‖Tx− y‖2 + (1− β1 − β2)‖x− y‖2

for all x, y ∈ C. Motivated by [16, 11], we introduced three classes of nonlin-
ear mappings in Banach spaces [26] which contain the class of 2-generalized
hybrid mappings in a Hilbert space. Then we proved fixed point theorems for
these classes of nonlinear mappings in Banach spaces.

In this paper, we deal with the class of 2-generalized nonspreading map-
pings which is one of the three classes of nonlinear mappings defined in [26]
in Banach spaces. We first prove a general fixed point theorem of nonlinear
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mappings in a Banach space. Using this result, we give another proof of our
fixed point theorem [26] for 2-generalized nonspreading mappings in Banach
spaces. Then we prove a nonlinear mean convergence theorem of Baillon’s
type [2] and a weak convergence theorem of Mann’s type[15] for such nonlin-
ear mappings in a Banach space.

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the topological
dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When
{xn} is a sequence in E, we denote the strong convergence of {xn} to x ∈ E
by xn → x and the weak convergence by xn ⇀ x. The modulus δ of convexity
of E is defined by

δ(ε) = inf

{
1− ‖x+ y‖

2
: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty subset of a Banach space E. A mapping
T : C → C is nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ C. A mapping
T : C → C is quasi-nonexpansive if F (T ) 	= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for
all x ∈ C and y ∈ F (T ), where F (T ) is the set of fixed points of T . If C is
a nonempty closed convex subset of a strictly convex Banach space E and
T : C → C is quasi-nonexpansive, then F (T ) is closed and convex; see Itoh
and Takahashi [8].

Let E be a Banach space. The duality mapping J from E into 2E
∗
is

defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists. In this case, E is called smooth. We know that E is smooth if and
only if J is a single-valued mapping of E into E∗. We also know that E is
reflexive if and only if J is surjective, and E is strictly convex if and only
if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive
Banach space, then J is a single-valued bijection. The norm of E is said to be
uniformly Gâteaux differentiable if for each y ∈ U , the limit (2.1) is attained
uniformly for x ∈ U . It is also said to be Fréchet differentiable if for each
x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . A Banach space E is
called uniformly smooth if the limit (2.1) is attained uniformly for x, y ∈ U .
It is known that if the norm of E is uniformly Gâteaux differentiable, then J
is uniformly norm-to-weak∗ continuous on each bounded subset of E, and if
the norm of E is Fréchet differentiable, then J is norm-to-norm continuous.
If E is uniformly smooth, J is uniformly norm-to-norm continuous on each
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bounded subset of E. For more details, see [19, 20]. The following result is
also in [19, 20].

Lemma 2.1. Let E be a smooth Banach space and let J be the duality mapping
on E. Then 〈x − y, Jx − Jy〉 ≥ 0 for all x, y ∈ E. Further, if E is strictly
convex and 〈x− y, Jx− Jy〉 = 0, then x = y.

Let E be a smooth Banach space. The function φ : E × E → (−∞,∞)
is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 (2.2)

for x, y ∈ E, where J is the duality mapping of E; see [1, 9]. We have from
the definition of φ that

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉 (2.3)

for all x, y, z ∈ E. From (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E, we can see
that φ(x, y) ≥ 0. Further, we can obtain the following equality:

2〈x− y, Jz − Jw〉 = φ(x,w) + φ(y, z)− φ(x, z)− φ(y, w) (2.4)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then
from Lemma 2.1 we have

φ(x, y) = 0⇐⇒ x = y. (2.5)

The following lemmas are in Xu [29] and Kamimura and Takahashi [9],
respectively.

Lemma 2.2. Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞)→
[0,∞) such that g(0) = 0 and

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)
for all x, y ∈ Br and λ with 0 ≤ λ ≤ 1, where Br = {z ∈ E : ‖z‖ ≤ r}.
Lemma 2.3. Let E be a smooth and uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0, 2r]→ R such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ‖z‖ ≤ r}.
Let E be a smooth Banach space and let C be a nonempty subset of E.

Then a mapping T : C → C is called generalized nonexpansive [5] if F (T ) 	= ∅
and

φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ). LetD be a nonempty subset of a Banach space E.
A mapping R : E → D is said to be sunny if

R(Rx+ t(x−Rx)) = Rx

for all x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction
or a projection if Rx = x for all x ∈ D. A nonempty subset D of a smooth
Banach space E is said to be a generalized nonexpansive retract (resp., sunny
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generalized nonexpansive retract) of E if there exists a generalized nonex-
pansive retraction (resp., sunny generalized nonexpansive retraction) R from
E onto D; see [5] for more details. The following results are in Ibaraki and
Takahashi [5].

Theorem 2.4. Let C be a nonempty closed sunny generalized nonexpansive
retract of a smooth and strictly convex Banach space E. Then the sunny
generalized nonexpansive retraction from E onto C is uniquely determined.

Theorem 2.5. Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpan-
sive retraction R from E onto C and let (x, z) ∈ E × C. Then the following
hold:

(i) z = Rx if and only if 〈x− z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(ii) φ(Rx, z) + φ(x,Rx) ≤ φ(x, z).

In 2007, Kohsaka and Takahashi [12] proved the following results.

Theorem 2.6. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed subset of E. Then the following are equivalent:

(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convex.

Theorem 2.7. Let E be a smooth, strictly convex and reflexive Banach space
and let C be a nonempty closed sunny generalized nonexpansive retract of E.
Let R be the sunny generalized nonexpansive retraction from E onto C and
let (x, z) ∈ E × C. Then the following are equivalent:

(i) z = Rx;
(ii) φ(x, z) = miny∈C φ(x, y).

Very recently, Ibaraki and Takahashi [7] also obtained the following re-
sult concerning the set of fixed points of a generalized nonexpansive mapping.

Theorem 2.8. Let E be a reflexive, strictly convex and smooth Banach space
and let T be a generalized nonexpansive mapping from E into itself. Then
F (T ) is closed and JF (T ) is closed and convex.

The following theorem is proved using Theorems 2.6 and 2.8.

Theorem 2.9 (see [7]). Let E be a reflexive, strictly convex and smooth Banach
space and let T be a generalized nonexpansive mapping from E into itself.
Then F (T ) is a sunny generalized nonexpansive retract of E.

Let l∞ be the Banach space of bounded sequences with supremum norm.
Let μ be an element of (l∞)∗ (the dual space of l∞). Then, we denote by
μ(f) the value of μ at f = (x1, x2, x3, . . .) ∈ l∞. Sometimes, we denote
by μn(xn) the value μ(f). A linear functional μ on l∞ is called a mean if
μ(e) = ‖μ‖ = 1, where e = (1, 1, 1, . . .). A mean μ is called a Banach limit on
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l∞ if μn(xn+1) = μn(xn). We know that there exists a Banach limit on l∞.
If μ is a Banach limit on l∞, then for f = (x1, x2, x3, . . .) ∈ l∞,

lim inf
n→∞ xn ≤ μn(xn) ≤ lim sup

n→∞
xn.

In particular, if f = (x1, x2, x3, . . .) ∈ l∞ and xn → a ∈ R, then we have
μ(f) = μn(xn) = a. For the proof of existence of a Banach limit and its other
elementary properties, see [19].

3. Fixed point theorems

Let E be a smooth Banach space and let C be a nonempty closed convex
subset of E. Let n ∈ N. Then a mapping T : C → C is called n-generalized
nonspreading [26] if there exist α1, α2, . . . , αn, β1, β2, . . . , βn, γ1, γ2, . . . , γn,
δ1, δ2, . . . , δn ∈ R such that for all x, y ∈ C,

n∑
k=1

αkφ(T
n+1−kx, Ty) +

(
1−

n∑
k=1

αk

)
φ(x, Ty)

+

n∑
k=1

γk
{
φ(Ty, Tn+1−kx)− φ(Ty, x)

}

≤
n∑

k=1

βkφ(T
n+1−kx, y) +

(
1−

n∑
k=1

βk

)
φ(x, y)

+
n∑

k=1

δk
{
φ(y, Tn+1−kx)− φ(y, x)

}
.

(3.1)

Such a mapping is called (α1, α2, . . . , αn, β1, β2, . . . , βn, γ1, γ2, . . . , γn, δ1,
δ2, . . . , δn)-generalized nonspreading. For example, an (α1, α2, β1, β2, γ1, γ2,
δ1, δ2)-generalized nonspreading mapping is as follows:

α1φ(T
2x, Ty) + α2φ(Tx, Ty) + (1− α1 − α2)φ(x, Ty)

+ γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}
+ γ2

{
φ(Ty, Tx)− φ(Ty, x)

}
≤ β1φ(T

2x, y) + β2φ(Tx, y) + (1− β1 − β2)φ(x, y)

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
(3.2)

for all x, y ∈ C. This is also called a 2-generalized nonspreading mapping;
see [26]. We know that an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized nonspread-
ing mapping is nonspreading in the sense of [14] for α1 = β1 = γ1 = δ1 = 0,
α2 = β2 = γ2 = 1 and δ2 = 0 in (3.2).

Now we state and prove the main result in this section.

Theorem 3.1. Let E be a smooth, strictly convex and reflexive Banach space
with the duality mapping J and let C be a nonempty closed convex subset of
E. Let T be a mapping of C into itself. Let {xn} be a bounded sequence of C
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and let μ be a mean on l∞. Suppose that

μnφ(xn, T y) ≤ μnφ(xn, y)

for all y ∈ C. Then T has a fixed point in C.

Proof. Using a mean μ and a bounded sequence {xn}, we define a function
g : E∗ → R as follows:

g(x∗) = μn〈xn, x
∗〉

for all x∗ ∈ E∗. Since μ is linear, g is also linear. Furthermore, we have

|g(x∗)| = |μn〈xn, x
∗〉|

≤ ‖μ‖ sup
n∈N

|〈xn, x
∗〉|

≤ ‖μ‖ sup
n∈N

‖xn‖‖x∗‖
= sup

n∈N

‖xn‖‖x∗‖

for all x∗ ∈ E∗. Then g is a linear and continuous real-valued function on E∗.
Since E is reflexive, there exists a unique element z of E such that

g(x∗) = μn〈xn, x
∗〉 = 〈z, x∗〉

for all x∗ ∈ E∗. Such an element z is in C. In fact, if z /∈ C, then there exists
y∗ ∈ E∗ by the separation theorem [19] such that

〈z, y∗〉 < inf
y∈C

〈y, y∗〉.

So, from {xn} ⊂ C we have

〈z, y∗〉 < inf
y∈C

〈y, y∗〉 ≤ inf
n∈N

〈xn, y
∗〉 ≤ μn〈xn, y

∗〉 = 〈z, y∗〉.

This is a contradiction. Then we have z ∈ C. From (2.3) we have that for
y ∈ C and n ∈ N,

φ(xn, y) = φ(xn, T y) + φ(Ty, y) + 2〈xn − Ty, JTy − Jy〉.
So, we have that for y ∈ C,

μnφ(xn, y) = μnφ(xn, T y) + μnφ(Ty, y) + 2μn〈xn − Ty, JTy − Jy〉
= μnφ(xn, T y) + φ(Ty, y) + 2〈z − Ty, JTy − Jy〉.

Since, by assumption, μnφ(xn, T y) ≤ μnφ(xn, y) for all y ∈ C, we have

μnφ(xn, y) ≤ μnφ(xn, y) + φ(Ty, y) + 2〈z − Ty, JTy − Jy〉.
This implies that

0 ≤ φ(Ty, y) + 2〈z − Ty, JTy − Jy〉.
We know that z is an element of C. Putting y = z, we have that

0 ≤ φ(Tz, z) + 2〈z − Tz, JTz − Jz〉.
Thus we have from (2.4) that

0 ≤ φ(Tz, z) + φ(z, z) + φ(Tz, Tz)− φ(z, Tz)− φ(Tz, z).
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So, we have 0 ≤ −φ(z, Tz) and hence 0 = φ(z, Tz). Since E is strictly convex,
we have Tz = z. This completes the proof. �

Using Theorem 3.1, we prove a fixed point theorem for n-generalized
nonspreading mappings in a Banach space; see [26, Remark 2].

Theorem 3.2. Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let T : C → C be an n-generalized
nonspreading mapping. Then T has a fixed point in C if and only if {Tmz}
is bounded for some z ∈ C.

Proof. If F (T ) 	= ∅, then {Tmz} = {z} for z ∈ F (T ). So, {Tmz} is bounded.
Conversely, let T : C → C be n-generalized nonspreading. Then there exist

α1, α2, . . . , αn, β1, β2, . . . , βn, γ1, γ2, . . . , γn, δ1, δ2, . . . , δn ∈ R

such that for all x, y ∈ C,

n∑
k=1

αkφ(T
n+1−kx, Ty) +

(
1−

n∑
k=1

αk

)
φ(x, Ty)

+
n∑

k=1

γk
{
φ(Ty, Tn+1−kx)− φ(Ty, x)

}

≤
n∑

k=1

βkφ(T
n+1−kx, y) +

(
1−

n∑
k=1

βk

)
φ(x, y)

+
n∑

k=1

δk
{
φ(y, Tn+1−kx)− φ(y, x)

}
.

(3.3)

By assumption, we can take z ∈ C such that {Tmz} is bounded. Replacing
x by Tmz in (3.3), we have that for any y ∈ C and m ∈ N ∪ {0},

n∑
k=1

αkφ(T
n+1−kTmz, Ty) +

(
1−

n∑
k=1

αk

)
φ(Tmz, Ty)

+

n∑
k=1

γk
{
φ(Ty, Tn+1−kTmz)− φ(Ty, Tmz)

}

≤
n∑

k=1

βkφ(T
n+1−kTmz, y) +

(
1−

n∑
k=1

βk

)
φ(Tmz, y)

+
n∑

k=1

δk
{
φ(y, Tn+1−kTmz)− φ(y, Tmz)

}
.

Since {Tmz} is bounded, we can apply a Banach limit μ to both sides of the
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above inequality. Then we have

μm

(
n∑

k=1

αkφ(T
m+n+1−kz, Ty) +

(
1−

n∑
k=1

αk

)
φ(Tmz, Ty)

+
n∑

k=1

γk
{
φ(Ty, Tm+n+1−kz)− φ(Ty, Tmz)

})

≤ μm

(
n∑

k=1

βkφ(T
m+n+1−kz, y) +

(
1−

n∑
k=1

βk

)
φ(Tmz, y)

+
n∑

k=1

δk
{
φ(y, Tm+n+1−kz)− φ(y, Tmz)

})
.

So, we obtain

n∑
k=1

αkμmφ(Tm+n+1−kz, Ty) +

(
1−

n∑
k=1

αk

)
μmφ(Tmz, Ty)

+
n∑

k=1

γk
{
μmφ(Ty, Tm+n+1−kz)− μmφ(Ty, Tmz)

}

≤
n∑

k=1

βkμmφ(Tm+n+1−kz, y) +

(
1−

n∑
k=1

βk

)
μmφ(Tmz, y)

+

n∑
k=1

δk
{
μmφ(y, Tm+n+1−kz)− μmφ(y, Tmz)

}

and hence

n∑
k=1

αkμmφ(Tmz, Ty) +

(
1−

n∑
k=1

αk

)
μmφ(Tmz, Ty)

+

n∑
k=1

γk
{
μmφ(Ty, Tmz)− μmφ(Ty, Tmz)

}

≤
n∑

k=1

βkμmφ(Tmz, y) +

(
1−

n∑
k=1

βk

)
μmφ(Tmz, y)

+
n∑

k=1

δk
{
μmφ(y, Tmz)− μmφ(y, Tmz)

}
.

This implies

μmφ(Tmz, Ty) ≤ μmφ(Tmz, y)

for all y ∈ C. By Theorem 3.1, T has a fixed point in C. �
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4. Some properties of generalized nonspreading mappings

In this section, we obtain fundamental properties for 2-generalized nonspread-
ing mappings in a Banach space.

Proposition 4.1. Let E be a smooth Banach space and let C be a nonempty
closed convex subset of E. Let α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R. Then a map-
ping T : C → C is (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized nonspreading if
and only if T satisfies that for any x, y ∈ C,

0 ≤ (β1 − α1)
{
φ(T 2x, Ty)− φ(x, Ty)

}
+ (β2 − α2)

{
φ(Tx, Ty)− φ(x, Ty)

}
+ φ(Ty, y)

+ 2〈x− Ty + β1(T
2x− x) + β2(Tx− x), JTy − Jy〉

− γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}− γ2
{
φ(Ty, Tx)− φ(Ty, x)

}
+ δ1

{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
.

Proof. Since a mapping T : C → C is (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized
nonspreading, we have that for any x, y ∈ C,

α1φ(T
2x, Ty) + α2φ(Tx, Ty) + (1− α1 − α2)φ(x, Ty)

+ γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}
+ γ2

{
φ(Ty, Tx)− φ(Ty, x)

}
≤ β1φ(T

2x, y) + β2φ(Tx, y) + (1− β1 − β2)φ(x, y)

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
.

Then we have from (2.3) that for any x, y ∈ C,

0 ≤ β1φ(T
2x, y) + β2φ(Tx, y) + (1− β1 − β2)φ(x, y)

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
− α1φ(T

2x, Ty)− α2φ(Tx, Ty)− (1− α1 − α2)φ(x, Ty)

− γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}− γ2
{
φ(Ty, Tx)− φ(Ty, x)

}
= β1

{
φ(T 2x, Ty) + φ(Ty, y) + 2〈T 2x− Ty, JTy − Jy〉}

+ β2

{
φ(Tx, Ty) + φ(Ty, y) + 2〈Tx− Ty, JTy − Jy〉}

+ (1− β1 − β2)
{
φ(x, Ty) + φ(Ty, y) + 2〈x− Ty, JTy − Jy〉}

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
− α1φ(T

2x, Ty)− α2φ(Tx, Ty)− (1− α1 − α2)φ(x, Ty)

− γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}− γ2
{
φ(Ty, Tx)− φ(Ty, x)

}
= (β1 − α1)

{
φ(T 2x, Ty)− φ(Tx, Ty)

}
+ (β2 − α2)

{
φ(Tx, Ty)− φ(x, Ty)

}
+ φ(Ty, y)

+ 2〈β1T
2x+ β2Tx+ (1− β1 − β2)x− Ty, JTy − Jy〉

− γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}− γ2
{
φ(Ty, Tx)− φ(Ty, x)

}
+ δ1

{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
.
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Hence we have that for any x, y ∈ C,

0 ≤ (β1 − α1)
{
φ(T 2x, Ty)− φ(x, Ty)

}
+ (β2 − α2)

{
φ(Tx, Ty)− φ(x, Ty)

}
+ φ(Ty, y)

+ 2〈x− Ty + β1(T
2x− x) + β2(Tx− x), JTy − Jy〉

− γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}− γ2
{
φ(Ty, Tx)− φ(Ty, x)

}
+ δ1

{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
.

This completes the proof. �

Let E be a Banach space and let C be a nonempty subset of E. Let T :
C → C be a mapping. Then p ∈ C is an asymptotic fixed point of T (see [17])
if there exists {xn} ⊂ C such that xn ⇀ p and limn→∞ ‖xn − Txn‖ = 0. We

denote by F̂ (T ) the set of asymptotic fixed points of T . Motivated by the
concept of asymptotic fixed points, we have the following result. This result
is used in Section 6.

Proposition 4.2. Let E be a strictly convex Banach space with a uniformly
Gâteaux differentiable norm, let C be a nonempty closed convex subset of E
and let T : C → C be a 2-generalized nonspreading mapping with F (T ) 	= ∅.
Suppose that {xn} is a sequence in C such that xn ⇀ p, limn→∞ ‖xn−Txn‖ =
0 and limn→∞ ‖xn − T 2xn‖ = 0. Then p ∈ F (T ).

Proof. Since T : C → C is a 2-generalized nonspreading mapping, there exist
α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R such that for any x, y ∈ C,

α1φ(T
2x, Ty) + α2φ(Tx, Ty) + (1− α1 − α2)φ(x, Ty)

+ γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}
+ γ2

{
φ(Ty, Tx)− φ(Ty, x)

}
≤ β1φ(T

2x, y) + β2φ(Tx, y) + (1− β1 − β2)φ(x, y)

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
.

(4.1)

Let {xn} be a sequence in C such that xn ⇀ p, limn→∞ ‖xn − Txn‖ = 0
and limn→∞ ‖xn − T 2xn‖ = 0. Since the norm of E is uniformly Gâteaux
differentiable, the duality mapping J on E is uniformly norm-to-weak∗ con-
tinuous on each bounded subset of E; see [20]. Using limn→∞ ‖xn−Txn‖ = 0
and limn→∞ ‖xn − T 2xn‖ = 0, we have limn→∞〈w, JTxn − Jxn〉 = 0 and
limn→∞〈w, JT 2xn − Jxn〉 = 0 for all w ∈ E. On the other hand, replacing x
by xn and y by p in (4.1), we obtain that

α1φ(T
2xn, Tp) + α2φ(Txn, Tp) + (1− α1 − α2)φ(xn, Tp)

+ γ1
{
φ(Tp, T 2xn)− φ(Tp, xn)

}
+ γ2

{
φ(Tp, Txn)− φ(Tp, xn)

}
≤ β1φ(T

2xn, p) + β2φ(Txn, p) + (1− β1 − β2)φ(xn, p)

+ δ1
{
φ(p, T 2xn)− φ(p, xn)

}
+ δ2

{
φ(p, Txn)− φ(p, xn)

}
.

(4.2)
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We have from Proposition 4.1 and (4.2) that

0 ≤ (β1 − α1)
{
φ(T 2xn, Tp)− φ(xn, Tp)

}
+ (β2 − α2)

{
φ(Txn, Tp)− φ(xn, Tp)

}
+ φ(Tp, p)

+ 2〈xn − Tp+ β1(T
2xn − xn) + β2(Txn − xn), JTp− Jp〉

− γ1
{
φ(Tp, T 2xn)− φ(Tp, xn)

}− γ2
{
φ(Tp, Txn)− φ(Tp, xn)

}
+ δ1

{
φ(p, T 2xn)− φ(p, xn)

}
+ δ2

{
φ(p, Txn)− φ(p, xn)

}
= (β1 − α1)

{‖T 2xn‖2 − ‖xn‖2 − 2〈T 2xn − xn, JTp〉
}

+ (β2 − α2)
{‖Txn‖2 − ‖xn‖2 − 2〈Txn − xn, JTp〉

}
+ φ(Tp, p)

+ 2〈xn − Tp+ β1(T
2xn − xn) + β2(Txn − xn), JTp− Jp〉

− γ1
{‖T 2xn‖2 − ‖xn‖2 − 2〈Tp, JT 2xn − Jxn

}
− γ2

{‖Txn‖2 − ‖xn‖2 − 2〈Tp, JTxn − Jxn

}
+ δ1

{‖T 2xn‖2 − ‖xn‖2 − 2〈p, JT 2xn − Jxn

}
+ δ2

{‖Txn‖2 − ‖xn‖2 − 2〈p, JTxn − Jxn

}
.

(4.3)

From

|‖T 2xn‖2 − ‖xn‖2| = (‖T 2xn‖+ ‖xn‖)|‖T 2xn‖ − ‖xn‖|
≤ (‖T 2xn‖+ ‖xn‖)‖T 2xn − xn‖

and

|‖Txn‖2 − ‖xn‖2| = (‖Txn‖+ ‖xn‖)|‖Txn‖ − ‖xn‖|
≤ (‖Txn‖+ ‖xn‖)‖Txn − xn‖,

we have ‖T 2xn‖2 − ‖xn‖2 → 0 and ‖Txn‖2 − ‖xn‖2 → 0 as n → ∞. So,
letting n→∞ in (4.3), we have that

0 ≤ φ(Tp, p) + 2〈p− Tp, JTp− Jp〉
= φ(Tp, p) + φ(p, p) + φ(Tp, Tp)− φ(p, Tp)− φ(Tp, p)

= −φ(p, Tp).
Thus φ(p, Tp) ≤ 0 and then φ(p, Tp) = 0. Since E is strictly convex, we
obtain p = Tp. This completes the proof. �

5. Nonlinear ergodic theorem

Let E be a smooth Banach space, let C be a nonempty closed convex subset
of E and let J be the duality mapping from E into E∗. We know that a
mapping T : C → C is called n-generalized nonspreading if T satisfies (3.1).
Observe that if T : C → C is an n-generalized nonspreading mapping and
F (T ) 	= ∅, then

φ(u, Ty) ≤ φ(u, y)
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for all u ∈ F (T ) and y ∈ C. Indeed, putting x = u ∈ F (T ) in (3.1), we obtain

n∑
k=1

αkφ(u, Ty) +

(
1−

n∑
k=1

αk

)
φ(u, Ty)

+
n∑

k=1

γk
{
φ(Ty, u)− φ(Ty, u)

}

≤
n∑

k=1

βkφ(u, y) +

(
1−

n∑
k=1

βk

)
φ(u, y)

+

n∑
k=1

δk
{
φ(y, u)− φ(y, u)

}
.

So, we have that
φ(u, Ty) ≤ φ(u, y) (5.1)

for all u ∈ F (T ) and y ∈ C. Similarly, putting y = u ∈ F (T ) in (3.1), we
obtain that for x ∈ C,

n∑
k=1

αkφ(T
n+1−kx, u) +

(
1−

n∑
k=1

αk

)
φ(x, u)

+
n∑

k=1

γk
{
φ(u, Tn+1−kx)− φ(u, x)

}

≤
n∑

k=1

βkφ(T
n+1−kx, u) +

(
1−

n∑
k=1

βk

)
φ(x, u)

+
n∑

k=1

δk
{
φ(u, Tn+1−kx)− φ(u, x)

}
and hence

n∑
k=1

(αk − βk)
{
φ(Tn+1−kx, u)− φ(x, u)

}

+

n∑
k=1

(γk − δk)
{
φ(u, Tn+1−kx)− φ(u, x)

} ≤ 0.

If αk − βk = 0 for all k = 1, 2, . . . , n − 1, γk ≤ δk for all k = 1, 2, . . . , n and
αn > βn, then we have from (5.1) that

(αn − βn)
{
φ(Tx, u)− φ(x, u)

}
≤

n∑
k=1

(δk − γk)
{
φ(u, Tn+1−kx)− φ(u, x)

}
≤ 0.

So, we have that
φ(Tx, u) ≤ φ(x, u) (5.2)

for all x ∈ C and u ∈ F (T ). For example, let us consider a 2-generalized



172 W. Takahashi, N.-C. Wong and J.-C. Yao JFPTA

nonspreading mapping T : C → C which satisfies (3.2); i.e.,

α1φ(T
2x, Ty) + α2φ(Tx, Ty) + (1− α1 − α2)φ(x, Ty)

+ γ1
{
φ(Ty, T 2x)− φ(Ty, x)

}
+ γ2

{
φ(Ty, Tx)− φ(Ty, x)

}
≤ β1φ(T

2x, y) + β2φ(Tx, y) + (1− β1 − β2)φ(x, y)

+ δ1
{
φ(y, T 2x)− φ(y, x)

}
+ δ2

{
φ(y, Tx)− φ(y, x)

}
(5.3)

for all x, y ∈ C. Then we have that α1 = β1, α2 > β2, γ1 ≤ δ1 and γ2 ≤ δ2
imply that

φ(Tx, u) ≤ φ(x, u)

for all x ∈ C and u ∈ F (T ). Now using the technique developed by [18,
25], we can prove the following nonlinear ergodic theorem for 2-generalized
nonspreading mappings in a Banach space. For proving this result, we need
the following lemma.

Lemma 5.1. Let E be a uniformly convex Banach space with a Fréchet dif-
ferentiable norm and let C be a nonempty closed convex sunny generalized
nonexpansive retract of E. Let T : C → C be a generalized nonexpansive map-
ping, that is, F (T ) 	= ∅ and φ(Tx, u) ≤ φ(x, u) for all x ∈ C and u ∈ F (T ).
Let R be the sunny generalized nonexpansive retraction of E onto F (T ). De-
fine, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx.

If each weak cluster point of {Snx} belongs to F (T ), then {Snx} converges
weakly to the strong limit of {RTnx}.

Proof. We know that since C is a sunny generalized nonexpansive retract
of E, there exists the sunny generalized nonexpansive retraction P of E
onto C. On the other hand, since a mapping T : C → C satisfies that
F (T ) 	= ∅ and

φ(Tx, u) ≤ φ(x, u)

for all x ∈ C and u ∈ F (T ), T is generalized nonexpansive. So, putting
S = TP , we have that S is a generalized nonexpansive mapping of E into
itself such that F (S) = F (T ). Indeed, we have

z ∈ F (T )⇐⇒ z = Tz ⇐⇒ z = Pz = TPz ⇐⇒ z = Sz.

So, it follows that F (S) = F (T ). We also have that for any x ∈ E and
u ∈ F (S) = F (T ),

φ(Sx, u) = φ(TPx, u) ≤ φ(Px, u) ≤ φ(x, u).

So, S is a generalized nonexpansive mapping of E into itself such that F (S) =
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F (T ). From Theorems 2.9 and 2.4, there exists the sunny generalized nonex-
pansive retraction R of E onto F (T ). From Theorem 2.7, this retraction R
is characterized by

Rx = argminu∈F (T )φ(x, u).

We also know from Theorem 2.5 that

0 ≤ 〈v −Rv, JRv − Ju〉 ∀u ∈ F (T ), v ∈ C.

Adding up φ(Rv, u) to both sides of this inequality, we have

φ(Rv, u) ≤ φ(Rv, u) + 2〈v −Rv, JRv − Ju〉
= φ(Rv, u) + φ(v, u) + φ(Rv,Rv)− φ(v,Rv)− φ(Rv, u)

= φ(v, u)− φ(v,Rv).

(5.4)

Since φ(Tz, u) ≤ φ(z, u) for any u ∈ F (T ) and z ∈ C, it follows that

φ(Tnx,RTnx) ≤ φ(Tnx,RTn−1x)

≤ φ(Tn−1x,RTn−1x).

Hence the sequence φ(Tnx,RTnx) is nonincreasing. Putting u = RTnx and
v = Tmx with n ≤ m in (5.4), we have from Theorem 2.3 that

g(‖RTmx−RTnx‖) ≤ φ(RTmx,RTnx)

≤ φ(Tmx,RTnx)− φ(Tmx,RTmx)

≤ φ(Tnx,RTnx)− φ(Tmx,RTmx),

where g is a strictly increasing, continuous and convex real-valued function
with g(0) = 0. From the properties of g, {RTnx} is a Cauchy sequence.
Therefore, {RTnx} converges strongly to a point q ∈ F (T ) since F (T ) is
closed from Theorem 2.8. Next consider a fixed x ∈ C and an arbitrary
subsequence {Snix} of {Snx} such that Snix ⇀ v. By assumption, we know
that v ∈ F (T ). Rewriting the characterization of the retraction R, we have
that

0 ≤ 〈T kx−RT kx, JRT kx− Ju〉
and hence

〈T kx−RT kx, Ju− Jq〉 ≤ 〈T kx−RT kx, JRT kx− Jq〉
≤ ‖T kx−RT kx‖ · ‖JRT kx− Jq‖
≤ K‖JRT kx− Jq‖,

whereK is an upper bound for ‖T kx−RT kx‖. Summing up these inequalities
for k = 0, 1, . . . , n− 1, we get〈

Snx− 1

n

n−1∑
k=0

RT kx, Ju− Jq

〉
≤ K

1

n

n−1∑
k=0

‖JRT kx− Jq‖,

where Snx = 1
n

∑n−1
k=0 T

kx. Letting ni → ∞ and remembering that J is
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continuous, we get

〈v − q, Ju− Jq〉 ≤ 0.

This holds for any u ∈ F (T ). Therefore Rv = q. But because v ∈ F (T ), we
have v = q. Thus the sequence {Snx} converges weakly to the point q, where
q = limn→∞ RTnx. �

Using Lemma 5.1, we obtain the following nonlinear ergodic theorems
for 2-generalized nonspreading mappings in a Banach space.

Theorem 5.2. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm and let C be a nonempty closed convex sunny generalized
nonexpansive retract of E. Let T : C → C be a 2-generalized nonspreading
mapping with F (T ) 	= ∅ such that φ(Tx, u) ≤ φ(x, u) for all x ∈ C and
u ∈ F (T ). Let R be the sunny generalized nonexpansive retraction of E onto
F (T ). Then, for any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element q of F (T ), where q = limn→∞ RTnx.

Proof. Since a 2-generalized nonspreading mapping T : C → C with F (T ) 	=
∅ satisfies that φ(Tx, u) ≤ φ(x, u) for all x ∈ C and u ∈ F (T ), T is gen-
eralized nonexpansive. Fix x ∈ C. To show the theorem, it is sufficient to
show from Lemma 5.1 that each weak cluster point of {Snx} belongs to
F (T ). Since T : C → C is a 2-generalized nonspreading mapping, there exist
α1, α2, β1, β2, γ1, γ2, δ1, δ2 ∈ R satisfying (5.3). Since F (T ) 	= ∅, we have from
(5.1) that φ(u, Ty) ≤ φ(u, y) for all u ∈ F (T ) and y ∈ C. Taking a fixed
point u of T , we have that for x ∈ C, φ(u, Tnx) ≤ φ(u, x) for all n ∈ N. Then
{Tnx} is bounded. Replacing x by T kx in (5.3), we have that for any y ∈ C
and k ∈ N ∪ {0},

α1φ(T
k+2x, Ty) + α2φ(T

k+1x, Ty) + (1− α1 − α2)φ(T
kx, Ty)

+ γ1
{
φ(Ty, T k+2x)− φ(Ty, T kx)

}
+ γ2

{
φ(Ty, T k+1x)− φ(Ty, T kx)

}
≤ β1φ(T

k+2x, y) + β2φ(T
k+1x, y) + (1− β1 − β2)φ(T

kx, y)

+ δ1
{
φ(y, T k+2x)− φ(y, T kx)

}
+ δ2

{
φ(y, T k+1x)− φ(y, T kx)

}
= β1

{
φ(T k+2x, Ty) + φ(Ty, y) + 2〈T k+2x− Ty, JTy − Jy〉}

+ β2

{
φ(T k+1x, Ty) + φ(Ty, y) + 2〈T k+1x− Ty, JTy − Jy〉}

+ (1− β1 − β2)
{
φ(T kx, Ty) + φ(Ty, y) + 2〈T kx− Ty, JTy − Jy〉}

+ δ1
{
φ(y, T k+2x)− φ(y, T kx)

}
+ δ2

{
φ(y, T k+1x)− φ(y, T kx)

}
.

(5.5)
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Then we have from Proposition 4.1 that

0 ≤ (β1 − α1)
{
φ(T k+2x, Ty)− φ(T kx, Ty)

}
+ (β2 − α2)

{
φ(T k+1x, Ty)− φ(T kx, Ty)

}
+ φ(Ty, y)

+ 2〈β1T
k+2x+ β2T

k+1x+ (1− β1 − β2)T
kx− Ty, JTy − Jy〉

− γ1
{
φ(Ty, T k+2x)− φ(Ty, T kx)

}− γ2
{
φ(Ty, T k+1x)− φ(Ty, T kx)

}
+ δ1

{
φ(y, T k+2x)− φ(y, T kx)

}
+ δ2

{
φ(y, T k+1x)− φ(y, T kx)

}
= (β1 − α1)

{
φ(T k+2x, Ty)− φ(T kx, Ty)

}
+ (β2 − α2)

{
φ(T k+1x, Ty)− φ(T kx, Ty)

}
+ φ(Ty, y)

+ 2〈T kx− Ty + β1(T
k+2x− T kx) + β2(T

k+1x− T kx), JTy − Jy〉
− γ1

{
φ(Ty, T k+2x)− φ(Ty, T kx)

}− γ2
{
φ(Ty, T k+1x)− φ(Ty, T kx)

}
+ δ1

{
φ(y, T k+2x)− φ(y, T kx)

}
+ δ2

{
φ(y, T k+1x)− φ(y, T kx)

}
.

(5.6)
Summing up these inequalities in (5.6) with respect to k = 0, 1, . . . , n−1 and
dividing by n, we have

0 ≤ 1

n
(β1 − α1)

{
φ(Tn+1x, Ty) + φ(Tnx, Ty)− φ(Tx, Ty)− φ(x, Ty)

}
+

1

n
(β2 − α2)

{
φ(Tnx, Ty)− φ(x, Ty)

}
+ φ(Ty, y)

+ 2〈Snx− Ty, JTy − Jy〉
+

2

n
〈β1(T

n+1x+ Tnx− Tx− x) + β2(T
nx− x), JTy − Jy〉

− 1

n
γ1
{
φ(Ty, Tn+1x) + φ(Ty, Tnx)− φ(Ty, Tx)− φ(Ty, x)

}
− 1

n
γ2
{
φ(Ty, Tnx)− φ(Ty, x)

}
+

1

n
δ1
{
φ(y, Tn+1x)φ(y, Tnx)− φ(y, Tx)− φ(y, x)

}
+

1

n
δ2
{
φ(y, Tnx)− φ(y, x)

}
,

where Snx = 1
n

∑n−1
k=0 T

kx. Since {Tnx} is bounded by assumption, {Snx}
is bounded. Thus we have a subsequence {Snix} of {Snx} such that {Snix}
converges weakly to a point u ∈ C. Letting ni →∞ in the above inequality,
we obtain

0 ≤ φ(Ty, y) + 2〈u− Ty, JTy − Jy〉.
Putting y = u, we obtain

0 ≤ φ(Tu, u) + 2〈u− Tu, JTu− Ju〉
= φ(Tu, u) + φ(u, u) + φ(Tu, Tu)− φ(u, Tu)− φ(Tu, u)

= −φ(u, Tu).
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Hence we have φ(u, Tu) ≤ 0 and then φ(u, Tu) = 0. Since E is strictly convex,
we obtain u = Tu. This completes the proof. �
Theorem 5.3. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm. Let T : E → E be an (α, β, γ, δ)-generalized nonspreading
mapping such that α > β and γ ≤ δ. Assume that F (T ) 	= ∅ and let R be
the sunny generalized nonexpansive retraction of E onto F (T ). Then, for any
x ∈ E,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element q of F (T ), where q = limn→∞ RTnx.

Proof. Since the identity mapping I is a sunny generalized nonexpansive re-
tract of E onto E, E is a nonempty closed convex sunny generalized nonex-
pansive retract of E. We also know that α > β, together with γ ≤ δ, implies
that

φ(Tx, u) ≤ φ(x, u)

for all x ∈ E and u ∈ F (T ). So, we have the desired result from Theorem 5.1.
�

Theorem 5.4 (see [10]). Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let T : C → C be a generalized hybrid mapping
with F (T ) 	= ∅ and let P be the metric projection of H onto F (T ). Then, for
any x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element p of F (T ), where p = limn→∞ PTnx.

Proof. Since C is a nonempty closed convex subset of H, there exists the
metric projection of H onto C. In a Hilbert space, the metric projection of
H onto C is equivalent to the sunny generalized nonexpansive retraction of
E onto C. On the other hand, a generalized hybrid mapping T : C → C with
F (T ) 	= ∅ is quasi-nonexpansive; i.e.,

φ(Tx, u) = ‖Tx− u‖2 ≤ ‖x− u‖2 = φ(x, u)

for all x ∈ C and u ∈ F (T ). So, we have the desired result from Theorem 5.1.
�

Remark. We do not know whether a nonlinear ergodic theorem of Baillon’s
type for nonspreading mappings holds or not.

6. Weak convergence theorems

In this section, we prove a weak convergence theorem of Mann’s iteration
for generalized nonspreading mappings in a Banach space. For proving it,
we need the following two lemmas. The following lemma was obtained by
Takahashi and Yao [28].
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Lemma 6.1. Let E be a smooth and uniformly convex Banach space and let
C be a nonempty closed subset of E such that JC is closed and convex. Let
T : C → C be a generalized nonexpansive mapping such that F (T ) 	= ∅. Let
{αn} be a sequence of real numbers such that 0 ≤ αn < 1 and let {xn} be a
sequence in C generated by x1 = x ∈ C and

xn+1 = RC(αnxn + (1− αn)Txn) ∀n ∈ N,

where RC is a sunny generalized nonexpansive retraction of E onto C. Then
{RF (T )xn} converges strongly to an element z of F (T ), where RF (T ) is a
sunny generalized nonexpansive retraction of C onto F (T ).

From Lemma 2.2, we also have the following result. For the sake of
completeness, we give the proof.

Lemma 6.2. Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞)→
[0,∞) such that g(0) = 0 and

‖ax+ by + cz‖2 ≤ a‖x‖2 + b‖y‖2 + c‖z‖2 − abg(‖x− y‖)
for all x, y ∈ Br and a, b, c ≥ 0 with a + b + c = 1, where Br = {z ∈ E :
‖z‖ ≤ r}.
Proof. If a+ b = 0, then

‖ax+ by + cz‖2 = ‖cz‖2 = c2‖z‖2 ≤ c‖z‖2
= a‖x‖2 + b‖y‖2 + c‖z‖2 − abg(‖x− y‖).

If a+ b > 0, then we have from Lemma 2.2 that

‖ax+ by + cz‖2 =

∥∥∥∥(a+ b)

(
a

a+ b
x+

b

a+ b
y

)
+ cz

∥∥∥∥
2

≤ (a+ b)

∥∥∥∥ a

a+ b
x+

b

a+ b
y

∥∥∥∥
2

+ c‖z‖2

− (a+ b)cg

(∥∥∥∥ a

a+ b
x+

b

a+ b
y − z

∥∥∥∥
)

≤ (a+ b)

∥∥∥∥ a

a+ b
x+

b

a+ b
y

∥∥∥∥
2

+ c‖z‖2

≤ (a+ b)

(
a

a+ b
‖x‖2 + b

a+ b
‖y‖2

− a

a+ b

b

a+ b
g(‖x− y‖)

)
+ c‖z‖2

= a‖x‖2 + b‖y‖2 + c‖z‖2 − ab

a+ b
g(‖x− y‖)

≤ a‖x‖2 + b‖y‖2 + c‖z‖2 − abg(‖x− y‖).
This completes the proof. �
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Using Lemmas 6.1 and 6.2, and the technique developed by [6], we prove
the following theorem.

Theorem 6.3. Let E be a uniformly convex and uniformly smooth Banach
space and let C be a nonempty closed convex sunny generalized nonexpansive
retract of E. Let T : C → C be a 2-generalized nonspreading mapping with
F (T ) 	= ∅ such that φ(Tx, u) ≤ φ(x, u) for all x ∈ C and u ∈ F (T ). Let R be
the sunny generalized nonexpansive retraction of E onto F (T ). Let {an}, {bn}
and {cn} be sequences of real numbers such that 0 < a ≤ an, bn, cn ≤ b < 1
and an + bn + cn = 1 for all n ∈ N. Suppose {xn} is the sequence generated
by x1 = x ∈ C and

xn+1 = anxn + bnTxn + cnT
2xn ∀n ∈ N.

Then {xn} converges weakly to an element z of F (T ), where z=limn→∞ Rxn.

Proof. Let m ∈ F (T ). By the assumption, we know that T is a generalized
nonexpansive mapping of C into itself. So, we have

φ(xn+1,m) = φ(anxn + bnTxn + cnT
2xn,m)

≤ anφ(xn,m) + bnφ(Txn,m) + cnφ(T
2xn,m)

≤ anφ(xn,m) + bnφ(xn,m) + cnφ(xn,m)

= φ(xn,m).

Thus limn→∞ φ(xn,m) exists. Then we have that {xn} is bounded. This
implies that {Txn} and {T 2xn} are bounded. Put

r = sup
n∈N

{‖xn‖, ‖Txn‖, ‖T 2xn‖
}
.

Using Lemma 6.2, we have that

φ(xn+1,m) = φ(anxn + bnTxn + cnT
2xn,m)

≤ ‖anxn + bnTxn + cnT
2xn‖2

− 2〈anxn + bnTxn + cnT
2xn, Jm〉+ ‖m‖2

≤ an‖xn‖2 + bn‖Txn‖2 + cn‖T 2xn‖2
− anbng(‖Txn − xn‖)− 2an〈xn, Jm〉
− 2bn〈Txn, Jm〉 − 2cn〈T 2xn, Jm〉+ ‖m‖2

= an(‖xn‖2 − 2〈xn, Jm〉+ ‖m‖2)
+ bn(‖Txn‖2 − 2〈Txn, Jm〉+ ‖m‖2)
+ cn(‖T 2xn‖2 − 2〈T 2xn, Jm〉+ ‖m‖2)− anbng(‖Txn − xn‖)

= anφ(xn,m) + bnφ(Txn,m) + cnφ(T
2xn,m)

− anbng(‖Txn − xn‖)
≤ anφ(xn,m) + bnφ(xn,m) + cnφ(xn,m)

− anbng(‖Txn − xn‖)
= φ(xn,m)− anbng(‖Txn − xn‖).
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Then we obtain that

anbng(‖Txn − xn‖) ≤ φ(xn,m)− φ(xn+1,m).

From the assumptions of {an} and {bn}, we have

lim
n→∞ g(‖Txn − xn‖) = 0. (6.1)

Similarly, we have that

φ(xn+1,m) = φ(anxn + bnTxn + cnT
2xn,m)

≤ ‖anxn + bnTxn + cnT
2xn‖2

− 2〈anxn + bnTxn + cnT
2xn, Jm〉+ ‖m‖2

≤ an‖xn‖2 + bn‖Txn‖2 + cn‖T 2xn‖2 − ancng(‖T 2xn − xn‖)
− 2an〈xn, Jm〉 − 2bn〈Txn, Jm〉 − 2cn〈T 2xn, Jm〉+ ‖m‖2

≤ anφ(xn,m) + bnφ(xn,m) + cnφ(xn,m)− ancng(‖T 2xn − xn‖)
≤ φ(xn,m)− ancng(‖T 2xn − xn‖).

Then we obtain that

ancng(‖T 2xn − xn‖) ≤ φ(xn,m)− φ(xn+1,m).

From the assumptions of {an} and {cn}, we have

lim
n→∞ g(‖T 2xn − xn‖) = 0. (6.2)

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni
}

of {xn} such that xni ⇀ v for some v ∈ C. We have from (6.1), (6.2) and
Proposition 4.2 that v is a fixed point of T . Let {xni} and {xnj} be two
subsequences of {xn} such that xni ⇀ u and xnj ⇀ v. We know that u, v ∈
F (T ). Put a = limn→∞(φ(xn, u)− φ(xn, v)). Since

φ(xn, u)− φ(xn, v) = 2〈xn, Jv − Ju〉+ ‖u‖2 − ‖v‖2,
we have a = 2〈u, Jv−Ju〉+‖u‖2−‖v‖2 and a = 2〈v, Jv−Ju〉+‖u‖2−‖v‖2.
From these equalities, we obtain

〈u− v, Ju− Jv〉 = 0.

Since E is strictly convex, it follows that u = v. Therefore, {xn} converges
weakly to an element u of F (T ). On the other hand, we know from Lemma 6.1
that {RF (T )xn} converges strongly to an element z of F (T ). From Lemma 2.5,
we also have

〈xn −RF (T )xn, JRF (T )xn − Ju〉 ≥ 0.

So, we have 〈u − z, Jz − Ju〉 ≥ 0. Since J is monotone, we also have 〈u −
z, Jz− Ju〉 ≤ 0. So, we have 〈u− z, Jz− Ju〉 = 0. Since E is strictly convex,
we have z = u. This completes the proof. �
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Using Theorem 6.3, we can prove the following weak convergence theo-
rems; see also [24].

Theorem 6.4. Let E be a uniformly convex and uniformly smooth Banach
space. Let T : E → E be an (α1, α2, β1, β2, γ1, γ2, δ1, δ2)-generalized non-
spreading mapping such that α1 = β1, α2 > β2, γ1 ≤ δ1 and γ2 ≤ δ2. Assume
that F (T ) 	= ∅ and let R be the sunny generalized nonexpansive retraction
of E onto F (T ). Let {an}, {bn} and {cn} be sequences of real numbers such
that 0 < a ≤ an, bn, cn ≤ b < 1 and an + bn + cn = 1 for all n ∈ N. Suppose
{xn} is the sequence generated by x1 = x ∈ C and

xn+1 = anxn + bnTxn + cnT
2xn ∀n ∈ N.

Then {xn} converges weakly to an element z of F (T ), where z=limn→∞ Rxn.

Proof. Since the identity mapping I is a sunny generalized nonexpansive
retract of E onto E, E is a nonempty closed convex sunny generalized non-
expansive retract of E. We also know that α1 = β1 and α2 > β2 together
with γ1 ≤ δ1 and γ2 ≤ δ2 imply that

φ(Tx, u) ≤ φ(x, u)

for all x ∈ E and u ∈ F (T ). So, we have the desired result from Theorem 6.3.
�

Theorem 6.5 (see [16]). Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let T : C → C be a 2-generalized hybrid mapping
with F (T ) 	= ∅ and let P be the metric projection of H onto F (T ). Let {an},
{bn} and {cn} be sequences of real numbers such that 0 < a ≤ an, bn, cn ≤
b < 1 and an + bn + cn = 1 for all n ∈ N. Suppose {xn} is the sequence
generated by x1 = x ∈ C and

xn+1 = anxn + bnTxn + cnT
2xn ∀n ∈ N.

Then {xn} converges weakly to an element z of F (T ), where z=limn→∞ Pxn.

Proof. Since C is a nonempty closed convex subset of H, there exists the
metric projection of H onto C. In a Hilbert space, the metric projection of
H onto C is equivalent to the sunny generalized nonexpansive retraction of
E onto C. On the other hand, a 2-generalized hybrid mapping T : C → C
with F (T ) 	= ∅ is quasi-nonexpansive; i.e.,

φ(Tx, u) = ‖Tx− u‖2 ≤ ‖x− u‖2 = φ(x, u)

for all x ∈ C and u ∈ F (T ). So, we have the desired result from Theorem 6.3.
�

Remark. We do not know whether a weak convergence theorem of Mann’s
type for nonspreading mappings holds or not.
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