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In this paper, a degree theory for finite dimensional generalized variational inequalities is built and employed to prove some results on
solution existence and solution stability.
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1. Introduction

Many problems in analysis and in the application of
analysis can be reduced to a study of the solution set of
an equation /ðxÞ ¼ p in an appropriate space. Degree the-
ory has developed as means of examining the solution exis-
tence and their number of the solution.

Suppose that D is a open bounded set in Rn with the clo-
sure D and the boundary oD. Let / : D! Rn be an contin-
uous map and p 2 Rn such that p 62 /ðoDÞ. The aim of
degree theory is to define an integer dð/;D; pÞ, the degree
of / at p respect to D (see [7,10,20] for the definition) with
the properties that dð/;D; pÞ is an estimate of the number
of solution of /ðxÞ ¼ p in D, d is continuous in / and p

and d is additive in the domain D. The following list sum-
marizes some properties most frequently used (see, for
instance [7,10,18,26]).

Theorem 1.1. Suppose that p 62 /ðoXÞ. Then the following

properties hold:
 U

0377-2217/$ - see front matter � 2007 Published by Elsevier B.V.

doi:10.1016/j.ejor.2007.11.032

q This research was partially supported by a grant from the National
Science Council of Taiwan, ROC.

* Corresponding author. Tel.: +886 7 5253816; fax: +886 7 5253809.
E-mail addresses: btkien@math.nsysu.edu.tw (B.T. Kien), wong@

math.nsysu.edu.tw (N.C. Wong), yaojc@math.nsysu.edu.tw (J.C. Yao).

Please cite this article in press as: B.T. Kien et al., Degree theory for
Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.11.0
(1) (Normalization) If p 2 D then dðI ;D; pÞ ¼ 1, where I is

the identity mapping.

(2) (Existence) If dð/;D; pÞ 6¼ 0 then there is x 2 D such

that /ðxÞ ¼ p.

(3) (Additivity) Suppose that D1 and D2 are disjoint open

sets of D. If p 62 /ðD n ðD1 [ D2Þ then
gener
32
dðD; f ; pÞ ¼ dð/;D1; pÞ þ dð/;D2; pÞ:
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(4) (Homotopy invariance) Suppose that H : ½0; 1� � D!
Rn is continuous. If p 62 Hðt; oDÞ for all t 2 ½0; 1� then
dðHðt; �Þ;D; pÞ is independent of t.

(5) (Excision) If D0 is a closed set of D and p 62 /ðD0Þ then

dð/;D; pÞ ¼ dð/;D n D0; pÞ.

Recently, in the two-volume book [9] dedicated entirely
to finite dimensional variational inequalities (VI, for brev-
ity), Facchinei and Pang have used degree theory to obtain
existence theorems for variational inequalities (see [9, Prop-
osition 2.2.3 and Theorem 2.3.4]). These results gave a nec-
essary and sufficient condition for a pseudomonotone VI
on a general closed convex set to have a solution. In partic-
ular, Pang [19] used degree theory to obtain interesting
results on sensitivity of a parametric nonsmooth equation
with multivalued perturbed solution sets. This paper has
been very influential for the optimization community. Also,
based on degree theory, Robinson [22] provided a strong
alized variational inequalities and applications, European
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conclusion on the solution stability of variational condi-
tions; Gowda [11] proved inverse and implicit function the-
orems for H-differentiable functions, thereby giving a
unified treatment of such theorem for C1-functions and
for locally Lipschitzian function. In order to obtain these
results, the authors have used degree theory as a bridge
to marry nonlinear analysis and variational inequality the-
ory under which we can study problems via nonlinear
equations.

Let us assume that Rn is a finite dimensional space with
the Euclidian norm and K is a closed convex set in Rn. Let
f : K ! Rn be a continuous mapping. The variational
inequality defined by K and f denoted by VIðf ;KÞ, is the
problem of finding a vector x 2 K such that it satisfies the
inclusion

0 2 f ðxÞ þ NKðxÞ; ð1:1Þ

where N KðxÞ is the normal cone of K at x defined by the
formula

N KðxÞ ¼
fx� 2 Rn : hx�; y � xi 6 0 8y 2 Kg if x 2 K;

;; otherwise:

�

We denote by PKðxÞ the metric projection of x onto K and
put

UðxÞ ¼ x�PK ½x� f ðxÞ�: ð1:2Þ

U is called the natural map. It is clear that x is a solution of
(1.1) if and only if x is a solution of the equation UðxÞ ¼ 0:
Let X be an open bounded set in Rn such that X \ K 6¼ ;.
We wish to investigate the number of solutions of (1.1) in
X. Since (1.1) is equivalent to the equation UðxÞ ¼ 0, it sug-
gests us to compute the degree dðU;X; 0Þ. By this way, as it
mentioned above, [9,22] obtained interesting results on
solution existence and solution stability of VIs.

It is natural to try to study generalized variational
inequalities (GVI, for short) which is also known in the lit-
erature as set-valued variational inequalities in this direc-
tion. Namely, we consider the problem of finding x 2 K
such that

0 2 F ðxÞ þ N KðxÞ; ð1:3Þ

where F : K ! 2Rn
is a multifunction. We consider the so-

called generalized natural map which defined by

UF ðxÞ ¼ x�PKðx� F ðxÞÞ:

In this case we will meet some difficulties for applications
of degree theory to our problem. Namely, we can not apply
degree theory to UF directly because UF has no convex val-
ues and so the degree of UF is undefined generally.

The aim of the present paper is to build a degree theory
for GVIs via the natural map and employ the results
obtained to prove some facts on the solution existence
and solution stability of GVIs in finite dimensional spaces.

It notices that there have been many papers on degree
theory for multifunctions in the infinite dimensional setting
so far (see [3–5,12,13]). We emphasize that degree theory
for GVIs in the present paper is somewhat different from
Please cite this article in press as: B.T. Kien et al., Degree theory for
Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.11.
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degree theory for upper semicontinuous multifunctions
with convex and compact values. It is built via the map
UF which does not necessarily have convex values.

The rest of the paper contains two sections. In Section 2
we build a degree theory for GVIs. Section 3 is devote to
applications of obtained results. In this section we shall
prove some facts on the solution existence and solution sta-
bility of GVIs.

2. Degree theory for GVIs

Throughout the paper, K is a closed convex set in Rn, X
is an open bounded set in Rn such that X \ K 6¼ ;. Let
F : K ! 2Rn

be a multifunction which is upper semicontin-
uous with compact convex values.

Recall that a map F : K ! 2Rn
is upper semicontinuous

(u.s.c., for brevity) if for all x 2 K and for any open set
W � Rn satisfying F ðxÞ � W there exists an open neighbor-
hood U of x such that F ðyÞ � W for all y 2 U \ K. If
F ðxÞ 6¼ ; for all x 2 K and for any open set W � Rn satisfy-
ing F ðxÞ \ W 6¼ ;, there exists an open neighborhood U of
x such that F ðyÞ \ W 6¼ ; for all y 2 U \ K then F is said to
be lower semicontinuous (l.s.c., for brevity).

The following lemma plays an essential role for building
a degree theory of GVIs.

Lemma 2.1. Suppose that F : K ! 2Rn
is u.s.c. with closed

convex values. Then for any � > 0 there exists a continuous

map f� : Rn ! Rn such that for every x 2 K it holds

f�ðxÞ 2 F ððxþ �BÞ \ KÞ þ �B; ð2:1Þ
where B is the unit ball in Rn.

Proof. By our assumptions and the approximate selection
theorem due to Cellina (see [1, p. 84]), for every e > 0 there
exists a continuous map g� : K ! Rn such that

geðxÞ 2 F ðððxþ �BÞ \ KÞ þ �B 8x 2 K:

By Tietze-Urysohn’s theorem (see [8, Theorem 5.1, p. 149]),
for each � > 0, there exists a continuous extension
f� : Rn ! Rn of g�. As f� and g� agree on K, f� satisfies the
conclusion of the theorem. The proof is complete. h

We now consider GVIðF ;KÞ. For each � > 0 we define a
map U� : Rn ! Rn by the formula

U�ðxÞ ¼ x�PKðx� f�ðxÞÞ; ð2:2Þ
where f� is a approximate continuous selection of F which
satisfies (2.1). By the continuity of the metric projection
and Lemma 2.1, U� is continuous on Rn and hence on X.

We have the following lemma on properties of U�.

Lemma 2.2. Suppose that F is u.s.c. with compact convex

values and 0 62 ðF þ NKÞðoXÞ. Then the following assertions

hold:

(a) there exists �1 > 0 such that 0 62 U�ðoXÞ for all
� 2 ð0; �1�

(b) there exists �2 > 0 such that
generalized variational inequalities and applications, European
032
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dðU�;X; 0Þ ¼ dðU�0 ;X; 0Þ for all �; �0 2 ð0; �2�: ð2:3Þ

Proof. (a) Suppose the assertion is false. Then there exists a
sequence �k ! 0þ and a sequence xk 2 oX such that
U�k ðxkÞ ¼ 0. This means that

xk ¼ PKðxk � f�k ðxkÞÞ: ð2:4Þ

By compactness of oX we can assume that xk ! x0 2 oX.
Since xk 2 K \ oX, by Lemma 2.1, there exist
yk 2 K and zk 2 F ðxkÞ such that

kyk � xkk < �k; kzk � f�k ðxkÞk < �k:

Hence, yk ! x0. As F ðx0Þ is a compact set and F is upper
semicontinuous at x0, by taking a subsequence (if neces-
sary) we can suppose furthermore that zk ! z0 2 F ðx0Þ.
Hence, f�k ðxkÞ ! z0. Letting k !1, from (2.4) we obtain
x0 ¼ PKðx0 � z0Þ with z0 2 F ðx0Þ. By the property of the
metric projection we have

0 2 z0 þ NKðx0Þ � F ðx0Þ þ NKðx0Þ;

which contradicts our assumptions. We obtain the proof
part (a).

(b) On the contrary, suppose there exist sequences
0 < �k < �0k ! 0 such that

dðU�k ;X; 0Þ 6¼ dðU�k 0;X; 0Þ: ð2:5Þ

Put

Hðt; xÞ ¼ x�PKðx� tf�k ðxÞ � ð1� tÞf�0k ðxÞÞ; ðt; xÞ

2 ½0; 1� � X:

We have Hð0; xÞ ¼ U�0k
ðxÞ and Hð1; xÞ ¼ U�k ðxÞ. If

0 62 Hðt; oXÞ for all t 2 ½0; 1� then

dðHð0; �Þ;X; 0Þ ¼ dðHð1; �Þ;X; 0Þ;

because of (4) in Theorem 1.1. But the latter contradicts
(2.5). Hence, for each k, there exists tk 2 ½0; 1� such that
0 2 Hðtk; oXÞ. This implies that, for each k there exists
xk 2 oX such that

xk ¼ PKðxk � tkf�k ðxkÞ � ð1� tkÞf�0k ðxkÞÞ: ð2:6Þ

Since xk 2 K \ oX, by Lemma 2.1, there exist yk; y
0
k 2 K;

zk 2 F ðykÞ and z0k 2 F ðy0kÞ such that

kyk � xkk < �0k; kzk � f�k ðxkÞk < �0k;

and

ky0k � xkk < �0k; kz0k � f�0k ðxkÞk < �0k:

By compactness of ½0; 1� � oX we can assume that
ðtk; xkÞ ! ð�t;�xÞ 2 ½0; 1� � oX. Hence, yk ! �x and y0k ! �x.
By standard arguments as in the proof of (a) we get
f�k ðxkÞ ! z1 and f�0k ðxkÞ ! z2 for some z1; z2 2 F ð�xÞ. By let-
ting k !1, from (2.6) we get �x ¼ PKð�x��tz1 � ð1��tÞz2Þ.
Put �z ¼ �tz1 þ ð1��tÞz2 then �z 2 F ð�xÞ and �x ¼ PKð�x� �zÞ.
By the property of the metric projection we have

0 2 �zþ NKð�xÞ � F ð�xÞ þ NKð�xÞ:
Please cite this article in press as: B.T. Kien et al., Degree theory for
Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.11.0
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Since �x 2 oX, we get a contradiction. The proof of the lem-
ma is complete. h

From Lemma 2.2 it follows that there exists �� > 0 such
that 0 62 U�ðoXÞ and dðU�;X; 0Þ ¼ dðU�0 ;X; 0Þ for all
�; �0 2 ð0;���. It is a basis for the following definition.

Definition 2.1. Let F : K ! 2Rn
be an u.s.c. multifunction

with compact convex values and 0 62 ðF þ NKÞðoXÞ. The
degree of generalized variational inequality defined by F

and K respect to X at 0 is the common value dðU�;X; 0Þ for
� > 0 sufficiently small and denoted by dðF þ NK ;X; 0Þ.

Example 2.1. Let

F ðxÞ ¼
f1g if x > 0;

½�1; 1� if x ¼ 0;

f�1g if x < 0;

8><
>:

K ¼ ½�1; 1� and X ¼ ð�1=2; 2Þ. Then dðF þ N K ;X; 0Þ ¼ 1.
Indeed, for each � > 0 we consider the following

function

f�ðxÞ ¼
1 if x P �;

x=� if x 2 ð��; �Þ;
�1 if x 6 ��:

8><
>:

If x 2 K n ð��; �Þ then ðx; f�ðxÞÞ ¼ ðx; 1Þ 2 Graph F and so
distððx; 1Þ;Graph F Þ ¼ 0:

If x 2 K \ ð��; �Þ then ðx; f�ðxÞÞ ¼ ðx; x=�Þ. Sine
ð0; x=�Þ 2 Graph F ,

distððx; x=�Þ;Graph F ÞÞ 6 distððx; x=�Þ; ð0; x=�ÞÞ ¼ jxj < �:

Thus, f� are approximate selections of F. We will compute
U� ¼ x�PKðx� f�ðxÞÞ. Choose �� ¼ 1 and take any
� 2 ð0;���. We have the following cases:

If x 2 ð��; �Þ then jx� f�ðxÞj 6 1. So PKðx� f�ðxÞÞ ¼ 0.
If � 6 x 6 2 then PKðx� f�ðxÞÞ ¼ 0.
If x > 2 then PKðx� f�ðxÞÞ ¼ x� 2.
If �2 6 x 6 �� then PKðx� f�ðxÞÞ ¼ 0.
If x < �2 then PKðx� f�ðxÞÞ ¼ �x� 2.

From the above we obtain

PKðx� f�ðxÞÞ ¼
0 if x 2 ½�2; 2�;
x� 2 if x > 2;

�x� 2 if x < �2:

8><
>:

Hence,

U�ðxÞ ¼
x if x 2 ½�2; 2�;
2 if x > 2;

2xþ 2 if x < �2:

8><
>:

Note that oX ¼ f�1=2; 2g; F ð�1=2Þ þ N Kð�1=2Þ ¼ f1g
and F ð2Þ þ NKð2Þ ¼ ;. Hence, 0 62 ðF þ N KÞðoXÞ. We
now compute dðU�;X; 0Þ. As U� is differentiable in X we get
generalized variational inequalities and applications, European
32
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dðU�;X; 0Þ ¼
X

x2U�1
� ð0Þ

signU0�ðxÞ ¼ 1:

Since the latter equality is true for all � 2 ð0;���, we obtain
dðF þ NK ;X; 0Þ ¼ 1.

We have the following theorem on existence.

Theorem 2.1. Suppose that 0 62 ðF þ NKÞðoXÞ. Then the fol-

lowing assertions hold:

(a) (Existence) if dðF þ NK ;X; 0Þ 6¼ 0 then there exists

x 2 X \ K such that
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(b) if f : Rn ! Rn is a continuous map such that

f ðxÞ 2 F ðxÞ for all x 2 K then dðF þ NK ;X; 0Þ ¼
dðU;X; 0Þ, where UðxÞ ¼ x�PKðx� f ðxÞÞ.

Proof. (a) By definition, there exists �� > 0 such that
dðF þ NK ;X; 0Þ ¼ dðU�;X; 0Þ for all � 2 ð0;���. Let f�kg be
a sequence such that �k ! 0þ. Then dðU�k ;X; 0Þ 6¼ 0 for k

sufficiently large. By (2) in Theorem 1.1, there exists
xk 2 X such that U�k ðxkÞ ¼ 0. This is equivalent to

xk ¼ PKðxk � f�k ðxkÞÞ: ð2:7Þ

Since xk 2 K \ X, by Lemma 2.1, there exists yk 2 K and
zk 2 F ðykÞ such that

kyk � xkk < �k; kzk � f�k ðxkÞk < �k:

By compactness of K \ X we can assume that xk !
x0 2 K \ X. Hence, yk ! x0. By standard arguments we
get zk ! z0 and f �k ðxkÞ ! z0 for some z0 2 F ðx0Þ. Letting
k !1, from (2.7) we obtain x0 ¼ PKðx0 � z0Þ. The prop-
erty of the metric projection yields

0 2 z0 þ NKðx0Þ � F ðx0Þ þ NKðx0Þ:

Since 0 62 ðF þ N KÞðoXÞ we have x0 2 K \ X.
(b) By putting f� ¼ f for all � > 0 we get the desired

property. The proof of the theorem is complete. h

Example 2.2. Consider Example 2.1 we have dðFþ
NK ;X; 0Þ ¼ 1. By the above theorem, GVIðF ;KÞ has a solu-
tion x 2 X \ K. In this case, x ¼ 0 is a solution.

The following theorem contains most usual properties of
degree theory.

Theorem 2.2. Assume that 0 62 ðF þ NKÞðoXÞ. The following

assertions hold:

(a) (Homotopy invariance) If F 1; F 2 : K ! 2Rn
are u.s.c.

multifunctions with compact convex values and

0 62 ðtF 1 þ ð1� tÞF 2 þ N KÞðoXÞ for all t 2 ½0; 1� then
373

dðF 1 þ N K ;X; 0Þ ¼ dðF 2 þ N K ;X; 0Þ:
374

375

376
(b) (Additivity) If X1, X2 are disjoint open subsets of X
such that 0 62 ðF þ NKÞðX n ðX1 [ X2ÞÞ then
se cite this article in press as: B.T. Kien et al., Degree theory for gener
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dðF þN K ;X;0Þ ¼ dðF þNK ;X1;0Þ þ dðF þNK ;X2;0Þ:
(c) (Excision) If D � X is a closed set such that
0 62 ðF þ N KÞðDÞ then
dðF þ NK ;X; 0Þ ¼ dðF þ NK ;X n D; 0Þ:
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Proof. (a) Let f�; g� : R� Rn ! Rn be approximate selec-
tions of F 1 and F 2, respectively satisfying the conclusion
of Lemma 2.1. Put

Ut
�ðxÞ ¼ x�PKðx� tf�ðxÞ � ð1� tÞg�ðxÞÞ:

We claim that there is �� > 0 such that 0 62 Ut
�ðoXÞ for all

� 2 ½0;��� and t 2 ½0; 1�. In fact, if the claim is false, then
there exist a sequence tk 2 ½0; 1� and a sequence �k ! 0þ

such that 0 2 Utk
�k
ðoXÞ. Hence, for each k, there exists

xk 2 oX such that

xk ¼ PKðxk � tkf�k ðxkÞ � ð1� tkÞg�k ðxkÞÞ:

By compactness of ½0; 1� � oX we can assume that
ðtk; xkÞ ! ðt0; x0Þ 2 ½0; 1� � oX. By standard arguments we
can show that f�k ðxkÞ ! z1 for some z1 2 F 1ðx0Þ and
g�k ðxkÞ ! z2 for some z2 2 F 2ðx0Þ. Letting k !1 from
the above we obtain

x0 ¼ PKðx0 � t0z1 � ð1� t0Þz2Þ:
By the property of the metric projection we get

0 2 t0z1 þ ð1� t0Þz2 þ NKðx0Þ
� t0F 1ðx0Þ þ ð1� t0ÞF 2ðx0Þ þ N Kðx0Þ:

This contradicts the assumption and so our claim is
proved. We now can apply (4) of Theorem 1.1 to Ut

� to
get dðU0

� ;X; 0Þ ¼ dðU1
� ;X; 0Þ for all � 2 ð0;���. Hence,

dðF 1 þ N K ;X; 0Þ ¼ dðF 2 þ N K ;X; 0Þ.
(b) We will show that there exists �� > 0 such that

0 62 U�ðX n ðX1 [ X2ÞÞ for all � 2 ð0;���. Indeed, if the
assertion is false then there exists a sequence �k ! 0þ and
xk 2 X n ðX1 [ X2Þ such that xk ¼ PKðxk � f�k ðxkÞÞ. By
compactness of X we can assume that xk ! x0 2 X. If
x0 2 X1 [ X2 then xk 2 X1 [ X2 for k sufficiently large. This
contradicts the fact that xk 2 X n ðX1 [ X2Þ. Hence,
x0 2 X n ðX1 [ X2Þ. By standard arguments we have
f�k ðxkÞ ! z0 for some z0 2 F ðx0Þ. Letting k !1 from the
above we obtain x0 ¼ PKðx0 � z0Þ. This implies that
0 2 F ðx0Þ þ NKðx0Þ for some x0 2 X n ðX1 [ X2Þ, which is
a contradiction.

Thus, we have 0 62 U�ðX n ðX1 [ X2ÞÞ for all � 2 ð0;���. By
(3) of Theorem 1.1, we get

dðU�;X; 0Þ ¼ dðU�;X1; 0Þ þ dðU�;X2; 0Þ:

It follows that

dðF þ N K ;X; 0Þ ¼ dðF þ N K ;X1; 0Þ þ dðF þ NK ;X2; 0Þ:
(c) By standard arguments we show that 0 62 U�ðDÞ for all
� 2 ð0;���. Applying (5) of Theorem 1.1 to U� we obtain
the desired conclusion. The proof of the theorem is
complete. h
alized variational inequalities and applications, European
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Definition 2.2. A vector x0 2 K is called an isolated solu-
tion of GVIðF ;KÞ if there exists a neighborhood V of x0

such that x0 is the unique solution of GVIðF ;KÞ in V .

Theorem 2.3. Suppose that x0 is an isolated solution of

GVIðF ;KÞ and U is the collection of all open bounded neigh-

borhoods V of x0 such that V does not contain another solu-
tion of GVIðF ;KÞ. Then

dðF þ NK ; V 1; 0Þ ¼ dðF þ N K ; V 2; 0Þ

for all V 1; V 2 2 U. The common value dðF þ NK ; V ; 0Þ for

V 2 U is called the index of F þ N K and denoted by

iðF þ N K ; x0; 0Þ.

Proof. We will use the same arguments as in [10] for the
proof below.

Taking any V 2 U we have 0 62 ðF þ N KÞðoV Þ. There-
fore dðF þ N K ; V ; 0Þ is well defined. We now assume that
V 1; V 2 2 U. Put V ¼ V 1 [ V 2 2 U and D ¼ V 1 \ V c

2, where
V c

2 ¼ Rn n V 2. We have that D is a compact set in V and
0 62 ðF þ NKÞðDÞ. By (c) in Theorem 2.2, we get

dðF þ NK ; V ; 0Þ ¼ dðF þ N K ; V n D; 0Þ ¼ dðF þ N K ; V 2; 0Þ:

Using a similar argument for D ¼ V 2 \ V c
1, we get

dðF þ NK ; V ; 0Þ ¼ dðF þ N K ; V n D; 0Þ ¼ dðF þ N K ; V 1; 0Þ:

Thus, dðF þ NK ; V 1; 0Þ ¼ dðF þ N K ; V 2; 0Þ. h
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C3. Applications

In this section we shall employ the obtained results in
Section 2 to prove some facts on solution existence and
solution stability of GVIs

The following theorem is an extensions of a result in [9]
(see [9, Pr. 2.2.3]).

Theorem 3.1. Let K � Rn be a nonempty closed convex set

and F : K ! 2Rn
be an u.s.c. multifunction with nonempty

compact convex values. Assume that there exists a vector
x̂ 2 K such that the set

L6ðx̂Þ :¼ fx 2 K : inf
x�2F ðxÞ

hx�; x� x̂i 6 0g

is bounded (possibly empty).

Then GVIðF ;KÞ has a solution.

Proof. Let X be an open ball containing L6ðx̂Þ [ fx̂g. We
must have L6ðx̂Þ \ oX ¼ ; and hence,

inf
x�2F ðxÞ

hx�; x� x̂i > 0 8x 2 K \ oX: ð3:1Þ

If 0 2 ðF þ N KÞðoXÞ, then GVIðF ;KÞ has a solution.
Otherwise, the degree dðF þ N K ;X; 0Þ is well defined.
Hence, there exists �1 > 0 such that 0 62 U�ðoXÞ for all
� 2 ð0; �1�. Recall that U�ðxÞ ¼ x�PKðx� f�ðxÞÞ, where f�
is approximate selection of F which is continuous on Rn.
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We claim that there exists �2 > 0 such that for every
� 2 ð0; �2� it holds

hf�ðxÞ; x� x̂iP 0 8x 2 K \ oX: ð3:2Þ
Indeed, if the assertion is false then there exist sequences
�k ! 0þ and xk 2 K \ oX such that

hf�k ðxkÞ; xk � x̂i < 0 8k 2 N: ð3:3Þ
By Lemma 2.1, there exists ðyk; zkÞ 2 Graph F such that
kyk � xkk < ek and kf�k ðxkÞ � zkk < ek. By compactness of
K \ oX we may suppose that there exists �x 2 K \ oX such
that xk ! �x. Then yk ! �x. As F ð�xÞ is a compact set and F
is upper semicontinuous at �x, by taking a subsequence (if
necessary) we can suppose furthermore that zk !
�z 2 F ð�xÞ. Then f�k ðxkÞ ! �z. Letting k !1, from (3.3) we
obtain h�z;�x� x̂i 6 0; hence

inf
x�2F ð�xÞ

hx�;�x� x̂i 6 0:

This contradicts (3.1) and our claim is obtained.
Put �� ¼ minf�1; �2g. We now show that dðU�;X; 0Þ ¼ 1

for all � 2 ð0;��� and so dðF þ N K ;X; 0Þ ¼ 1. For this we
build a homotopy as in [9].

Fix any � 2 ð0;��� and put

Hðt; xÞ ¼ x�PKðtðx� f�ðxÞ þ ð1� tÞx̂Þ; ðt; xÞ 2 ½0; 1� � X:

We have Hð0; xÞ ¼ x� x̂ and Hð1; xÞ ¼ U�ðxÞ. Note that
dðHð0; �Þ;X; 0Þ ¼ 1. We now claim that 0 62 Hðt; oXÞ for
all t 2 ½0; 1�. In fact, it is obvious that 0 62 Hð0; oXÞ and
0 62 Hð1; oXÞ. Assume that there exist t 2 ð0; 1Þ and
x 2 oX such that 0 ¼ Hðt; xÞ. By the property of the metric
projection we have

hx� tðx� f�ðxÞ � ð1� tÞx̂; y � xiP 0 8y 2 K:

In particular, for y ¼ x̂ we get

htf�ðxÞ þ ð1� tÞðx� x̂Þ; x̂� xiP 0:

This implies

hf�ðxÞ; x̂� xiP 1� t
t
kx� x̂k2

> 0;

where the last inequality holds because t 2 ð0; 1Þ and x 6¼ x̂.
But then it follows that hf�ðxÞ; x� x̂i < 0 which contradicts
(3.2). Thus, 0 62 Hðt; oXÞ for all t 2 ½0; 1�. By the homotopy
invariance ((4) in Theorem 1.1) we obtain dðHð0; �Þ;
X; 0Þ ¼ dðHð1; �Þ;X; 0Þ ¼ 1.

In summary, we have proved that dðU�;X; 0Þ ¼ 1 for all
� 2 ð0;���. By the degree definition of GVIs we have
dðF þ N K ;X; 0Þ ¼ 1. According to Theorem 2.1, there
exists x0 2 X \ K such that 0 2 F ðx0Þ þ N Kðx0Þ. The proof
of the theorem is complete. h

In the rest of the paper we will present a result on solu-
tion stability of GVIs. Let us assume that M and K are sub-
sets of Rk and Rm, respectively; F : M � Rn ! 2Rn

and
K : K! 2Rn

be multifunctions. Consider the parametric
generalized variational inequality

0 2 F ðl; xÞ þ N KðkÞðxÞ; ð3:4Þ
generalized variational inequalities and applications, European
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where NKðkÞðxÞ is the value at x of the normal cone operator
associated with the set KðkÞ and ðl; kÞ 2 M � K are
parameters. We denote by Sðl; kÞ the solution set of the
problem (3.4) corresponding to ðl; kÞ and suppose that
x0 2 Sðl0; k0Þ for a given ðl0; k0Þ 2 M � K.

Our main concern is now to investigate the behaviour of
Sðl; kÞ when ðl; kÞ vary around ðl0; k0Þ. This problem has
been addressed by many authors in the last two decades.
For the relevant literature of the problem we refer the
reader to [14–17,22–25] and several references given therein.

The following result gives a sufficient condition for the
lowercontinuity of the solution map of (3.4). It is an exten-
sion of results in [14,22] for the case of GVIs.

Theorem 3.2. Assume that X 0, K0 and M0 are neighborhoods

of x0; k0 and l0, respectively and the following conditions are

satisfied:

(i) F ð�; �Þ is l.s.c. on M0 � X 0 with closed convex values
and F ðl0; �Þ is u.s.c. with compact convex values;

(ii) K : K0 ! 2Rn
is closed convex valued and pseudo-Lips-

chitz continuous around ðk0; x0Þ, i.e., there exist neigh-

borhoods V of k0, W of x0 and a constant k > 0 such

that

558

Plea
Jour
KðkÞ \ W � Kðk0Þ þ kkk� k0kBð0; 1Þ 8k; k0 2 V \ K;
560560

561

(iii) x0 is an isolated solution and there exists �r > 0 such

that
 T 562Q2
iðrF ðl0; �Þ þ NKðk0Þ\X 0
; x0; 0Þ 6¼ 0 8 r 2 ð0; �r�:
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CThen there exist a neighborhood U 0 of l0, a neighborhood V 0

of k0 and an open bounded neighborhood Q0 of x0 such that

the solution map Ŝ : U 0 � V 0 ! 2Rn
of (3.4) defined by

Ŝðl; kÞ ¼ Sðl; kÞ \ Q0 is nonempty valued and lower semi-

continuous at ðl0; k0Þ.

Proof. By (i) and the continuous selection theorem due to
Michael (see [26, Theorem 9G, p. 466]), there exists a con-
tinuous mapping f : M0 � X 0 ! Rn such that f ðl; xÞ 2
F ðl; xÞ for all ðl; xÞ 2 M0 � X 0. By Tietze-Urysohn’s theo-
rem (see [8, Theorem 5.1, p. 149]) we can assume that f is
continuous on Rk � Rn.

According to Lemma 1.1 in [24], it follows from (ii) that
there exist a neighborhood K00 � K0 \ V of k0, a neighbor-
hood X 00 � X 0 \ W of x0 and a constant k0 > 0 such that

kPKðkÞ\X 0
ðzÞ �PKðk0Þ\X 0

ðzÞk 6 k0kk� k0k1=2

for all k; k0 2 K00 and z 2 X 00. Hence, for any z; z0 2 X 00 and
k; k0 2 K00 we have

kpðk; zÞ � pðk0; z0Þk ¼ kPKðkÞ\X 0
ðzÞ �PKðk0Þ\X 0

ðz0Þk
6 kPKðkÞ\X 0

ðzÞ �PKðkÞ\X 0
ðz0Þk

þ kPKðkÞ\X 0
ðz0Þ �PKðk0Þ\X 0

ðz0Þk

6 kz� z0k þ k0kk� kk
1
2:
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Consequently, p : K00 � X 00 ! X 0 is uniformly continuous
on K00 � X 00.

Choose r0 2 ð0; �r� such that x0 � r0f ðl0; x0Þ 2 X 00. By
the continuity of f, there exist a neighborhood X 1 � X 00 of
x0, a neighborhood M 00 � M0 of l0 such that

x� r0f ðl; xÞ 2 X 1 8 ðx; lÞ 2 X 1 �M 0
0:

Consider the function

Ur0
ðl; k; xÞ ¼ x�PKðkÞ\X 0

ðx� r0f ðl; xÞÞ

with ðl; k; xÞ 2 M 0
0 � K00 � X 1. By the above, Ur0

is contin-
uous on M 0

0 � K00 � X 1.
From (iii) and Theorem 2.3, there exists an open

bounded neighborhood Q0 � X 1 of x0 such that x0 is the
unique solution in Q0 of the generalized equation

0 2 F ðl0; xÞ þ N Kðk0ÞðxÞ:
This is equivalent to x0 is the unique solution in Q0 of the
generalized equation

0 2 r0F ðl0; xÞ þ NKðk0ÞðxÞ:
Since x0 belongs to the interior of X 0, it is also the unique
solution in Q0 of the generalized equation

0 2 r0F ðl0; xÞ þ NKðk0Þ\X 0
ðxÞ:

Moreover, we have

dðr0F ðl0; �Þ þ NKðk0Þ\X 0
;Q0; 0Þ

¼ iðr0F ðl0; �Þ þ NKðk0Þ\X 0
; x0; 0Þ 6¼ 0:

As r0f ðl0; xÞ 2 r0F ðl0; xÞ for all x 2 Kðk0Þ \ X 0, Theorem
2.1 implies

dðUr0
ðl0; k0; �Þ;Q0; 0Þ ¼ dðr0F ðl0; :Þ þ NKðk0Þ\X 0

;Q0; 0Þ 6¼ 0:

ð3:5Þ
Note that any solution of equation Ur0

ðl; k; xÞ ¼ 0 is also a
solution of GVIðF ðl; �Þ;KðkÞ \ X 0Þ. Hence, x0 is a unique
solution of the equation Ur0

ðl0; k0; xÞ ¼ 0 in Q0. Taking
any w 2 oQ0, we have Ur0

ðl0; k0;wÞ 6¼ 0. This implies that
there exist a dw > 0 such that 0 62 BðUr0

ðl0; k0;wÞ; dwÞ :¼
Bw. By the continuity of Ur0

, there exist a neighborhood
Uw � M 0

0 of l0, a neighborhood Kw � KP 0
0 of k0 and a

neighborhood Qw of w such that Ur0
ðl; k; zÞ 2 Bw for all

ðl; k; zÞ 2 Uw � Kw � Qw. Since oQ0 is a compact set, there
are some w1;w2; . . . ;wn such that oQ0 � [n

i¼1Qwi
. Put U 0 ¼

\n
i¼1Uwi ; V 0 ¼ \n

i¼1Kwi .
We now use similar arguments to the proof of Theorem

2.1 in [14] (see also [22, Theorem 3.2]) to show that U0; V 0

and Q0 satisfy the conclusion of the theorem. The proof is
complete. h
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