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Abstract. In this paper we introduce a hybrid relaxed-extragradient method for finding a
common element of the set of common fixed points of N nonexpansive mappings and the set of
solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping.
The hybrid relaxed-extragradient method is based on two well-known methods: hybrid and
extragradient. We derive a strong convergence theorem for three sequences generated by this
method. Based on this theorem, we also construct an iterative process for finding a common
fixed point of N +1 mappings, such that one of these mappings is taken from the more general
class of Lipschitz pseudocontractive mappings and the rest N mappings are nonexpansive.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C
be a nonempty closed convex subset of H and let PC be the metric projection from H onto C.
When {xn} is a sequence in H, then xn → x (resp. xn ⇀ x) will denote strong (resp. weak)
convergence of the sequence {xn} to x. Let A be a mapping of C into H. Then A is called
monotone if for all u, v ∈ C

〈Au− Av, u− v〉 ≥ 0.

A is called α-inverse-strongly-monotone (see [6,17]) if there exists a positive constant α such
that for all u, v ∈ C

〈Au− Av, u− v〉 ≥ α‖Au− Av‖2.

A is called β-strongly-monotone if there exists a positive constant β such that for all u, v ∈ C

〈Au− Av, u− v〉 ≥ β‖u− v‖2.

A is called k-Lipschitz-continuous if there exists a positive constant k such that for all u, v ∈ C

‖Au− Av‖ ≤ k‖u− v‖.

Obviously, it is easy to see that every α-inverse-strongly-monotone mapping A is monotone
and Lipschitz-continuous. Let S be a mapping of C into itself. Then S is called nonexpansive
if for all u, v ∈ C

‖Su− Sv‖ ≤ ‖u− v‖.

We denote by F (S) the set of fixed points of S, i.e., F (S) = {u ∈ C : Su = u}.

Let A be a mapping of C into H. The variational inequality problem is to find a u ∈ C
such that

〈Au, v − u〉 ≥ 0 ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by V I(C, A). The vari-
ational inequality problem was first discussed by Lions [16]. Since then, this problem has
been being studied widely. It is well known that, if A is a strongly monotone and Lipschitz-
continuous mapping on C, then the variational inequality problem has a unique solution. How
to actually find a solution of the variational inequality problem is one of the best important
topics in the study of the variational inequality problem. Indeed, there are a lot of different
approaches towards solving this problem in finite-dimensional and infinite-dimensional spaces,
and the research is intensively continued. A great deal of effort has gone into this problem;
see [1,2,5,7-15,17,19-28].

Recently, Antipin considered a finite-dimensional variant of the variational inequality prob-
lem, where the solution should satisfy some related constraint in inequality form [1] or some
systems of constraints in inequality and equality form [2]. Yamada [8] considered an infinite-
dimensional variant of the solution of the variational inequality problem on the set of fixed
points of some mapping. Takahashi and Toyoda [9] also formulated an infinite-dimensional
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variant of the problem of finding a common point of the set of the variational inequality
solutions and the set of fixed points of some mapping.

For finding an element of F (S) ∩ V I(C, A) under the assumption that a set C ⊂ H is
closed and convex, a mapping S of C into itself is nonexpansive, and a mapping A of C into
H is α-inverse-strongly-monotone, Takahashi and Toyoda [9] introduced the following iterative
scheme: {

x0 = x ∈ C,
xn+1 = αnxn + (1− αn)SPC(xn − λnAxn)

(1.1)

for all n ≥ 0, where {αn} is a sequence in (0, 1) and {λn} is a sequence in (0, 2α). They proved
that if F (S) ∩ V I(C, A) 6= ∅, then the sequence {xn} generated by (1.1) converges weakly to
some z ∈ F (S) ∩ V I(C, A).

For finding an element of F (S) ∩ V I(C, A) Iiduka and Takahashi [12] introduced the
following iterative scheme by a hybrid method:

x0 = x ∈ C,
yn = αnxn + (1− αn)SPC(xn − λnAxn),
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.2)

for all n ≥ 0, where 0 ≤ αn ≤ c < 1 and 0 < a ≤ λn ≤ b < 2α. They showed that if
F (S) ∩ V I(C, A) 6= ∅, then the sequence {xn}, generated by this iterative process, converges
strongly to PF (S)∩V I(C,A)x.

Generally speaking, the algorithm suggested by Takahashi and Toyoda [9] is based on two
well-known types of methods, namely, on the projection-type methods for solving variational
inequality problems and so-called hybrid or outer-approximation methods for solving fixed
point problem. The idea of “hybrid” or “outer-approximation” types of methods was originally
introduced by Haugazeau in 1968; see [5] for more details.

In 1976, for finding a solution of the nonconstrained variational inequality problem in the
finite-dimensional Euclidean space Rn under the assumption that a set C ⊂ Rn is closed and
convex and a mapping A of C into Rn is monotone and k-Lipschitz-continuous, Korpelevich
[15] introduced the following so-called extragradient method:

x0 = x ∈ C,
x̄n = PC(xn − λAxn),
xn+1 = PC(xn − λAx̄n)

(1.3)

for all n ≥ 0, where λ ∈ (0, 1/k). He proved that if V I(C, A) is nonempty, then the sequences
{xn} and {x̄n}, generated by (1.3), converge to the same point z ∈ V I(C, A).

Recently, motivated by the idea of Korpelevich’s extragradient method [15], Nadezhkina
and Takahashi [28] introduced the following iterative scheme for finding an element of F (S)∩
V I(C, A) and proved the following weak convergence result.
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Theorem 1.1 [28, Theorem 3.1]. Let C be a closed convex subset of a real Hilbert
space H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and S be a
nonexpansive mapping of C into itself such that F (S)∩V I(C, A) 6= ∅. Let {xn}, {yn} be the
sequences generated by

x0 = x ∈ C,
yn = PC(xn − λnAxn),
xn+1 = αnxn + (1− αn)SPC(xn − λAyn)

(1.4)

for all n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1).
Then the sequences {xn}, {yn} converge weakly to the same point z ∈ F (S)∩V I(C, A) where
z = limn→∞ PF (S)∩V I(C,A)xn.

At the same time, the idea of the extragradient method introduced by Korpelevich was
successively generalized and extended not only in Euclidean but also in Hilbert and Banach
spaces; see e.g., the recent papers of He, Yang and Yuan [11], Solodov and Svaiter [26], Solodov
[24], and Ceng and Yao [22,23,27].

Very recently, utilizing the combination of hybrid-type method and extragradient-type
method Nadezhkina and Takahashi [21] introduced the following iterative method for finding
an element of F (S) ∩ V I(C, A) and established the following strong convergence theorem.

Theorem 1.2 [21, Theorem 3.1]. Let C be a closed convex subset of a real Hilbert space
H. Let A be a monotone and k-Lipschitz-continuous mapping of C into H and let S be a
nonexpansive mapping of C into itself such that F (S) ∩ V I(C, A) 6= ∅. Let {xn}, {yn} and
{zn} be sequences generated by

x0 = x ∈ C,
yn = PC(xn − λnAxn),
zn = αnxn + (1− αn)SPC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx,

(1.5)

for every n ≥ 0, where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and {αn} ⊂ [0, c] for some
c ∈ [0, 1). Then the sequences {xn}, {yn} and {zn} converge strongly to the same element of
PF (S)∩V I(C,A)x.

Let {Si}N
i=1 be N nonexpansive mappings of C into itself, and A be a monotone, Lipschitz-

continuous mapping of C into H. In the present paper, for finding an element of
⋂N

i=1 F (Si)∩
V I(C, A), by the combination of extragradient and hybrid methods we introduce a hybrid
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relaxed-extragradient method

x0 = x ∈ C,
yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),
tn = PC(xn − λnAyn − λn(1− µn)Atn),
zn = αnxn + (1− αn)Sntn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.6)

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Moreover, it is shown that the sequences {xn}, {yn} and {zn} generated by the hybrid relaxed-
extragradient method converge strongly to q = P⋂N

i=1
F (Si)∩V I(C,A)

x. Utilizing this theorem, we

derive some strong convergence results in a real Hilbert space. Based on our main result, we
construct an iterative process for finding a common fixed point of N+1 mappings, one of which
is taken from the more general class of Lipschitz pseudocontractive mappings and the rest N
mappings are nonexpansive. We remark that, in the case when N = 1 and µn = 1 ∀n ≥ 0, the
iterative scheme (1.6) reduces to the one (1.5). Thus, our results are the improvements and
extension of many known results in the earlier and recent literature; see e.g., [9,12,13,18,21,28].

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let
C be a nonempty closed convex subset of H. For every point x ∈ H there exists a unique
nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x−y‖ for all y ∈ C. PC is called
the metric projection of H onto C. It is known that PC is a nonexpansive mapping from H
onto C. It is also known that PCx ∈ C and

〈x− PCx, PCx− y〉 ≥ 0 (2.1)

for all x ∈ H, y ∈ C; see [7] for more details. It is easy to see that (2.1) is equivalent to

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 (2.2)

for all x ∈ H, y ∈ C.
Let A be a monotone mapping of C into H. In the context of the variational inequality

problem the characterization of projection (2.1) implies

u ∈ V I(C, A) ⇔ u = PC(u− λAu) ∀λ > 0.
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It is also known that H satisfies Opial’s condition [7], i.e., for any sequence {xn} with xn ⇀ x
the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.
The following results will be used in the rest of this paper.

Lemma 2.1. Let H be a real Hilbert space. If {xn} is a sequence in H such that
xn ⇀ x̂ ∈ H and ‖xn‖ → ‖x̂‖, then xn → x̂.

Proof. Observe that

‖xn − x̂‖2 = ‖xn‖2 − 2〈xn, x̂〉+ ‖x̂‖2.

Since xn ⇀ x̂ ∈ H and ‖xn‖ → ‖x̂‖, we have

lim
n→∞

‖xn − x̂‖2 = lim
n→∞

(‖xn‖2 − 2〈xn, x̂〉+ ‖x̂‖2)

= ‖x̂‖2 − 2〈x̂, x̂〉+ ‖x̂‖2 = 0.

2

Lemma 2.2 Demiclosedness Principle [7]. Assume that S is a nonexpansive self-mapping
of a closed convex subset C of a Hilbert space H. If S has a fixed point, then I − S is
demiclosed; that is, whenever {xn} is a sequence in C converging weakly to some x ∈ C and
the sequence {(I − S)xn} converges strongly to some y ∈ H, it follows that (I − S)x = y.
Here I is the identity operator of H.

A mapping T : C → C is called pseudocontractive if for all x, y ∈ C

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2.

We remark that, if a mapping T : C → C is pseudocontractive and k-Lipschitz-continuous,
then the mapping A = I − T is monotone and k + 1-Lipschitz-continuous; moreover, F (T ) =
V I(C, A) (see e.g., [21, proof of Theorem 4.5]).

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx
and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal
if its graph G(T ) is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,
〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies f ∈ Tx. Let A be a monotone, k-Lipschitz-
continuous mapping of C into H and let NCv be the normal cone to C at v ∈ C, i.e.,
NCv = {w ∈ H : 〈v − u, w〉 ≥ 0 for all u ∈ C}. Define

Tv =

{
Av + NCv if v ∈ C,
∅ if v 6∈ C.
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It is known that in this case T is maximal monotone, and 0 ∈ Tv if and only if v ∈ V I(C, A);
see [3].

Throughout the rest of the paper, we shall use the following notation: for a given sequence
{xn} ⊂ H, ωw(xn) denotes the weak ω-limit set of {xn}; that is,

ωw(xn) := {x ∈ H : {xnj
} converges weakly to x for some subsequence {nj} of {n}}.

3. Strong Convergence Theorem

We are now in a position to prove our main result in this paper. Given N nonexpansive
mappings {Si}N

i=1 of C into itself, for each integer n ≥ 1 we write

Sn = SnmodN

with the mod function taking values in the set {1, 2, ..., N}; i.e., if n = jN +q for some integers
j ≥ 0 and 0 ≤ q < N , then Sn = SN if q = 0 and Sn = Sq if 1 < q < N .

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be a
monotone and k-Lipschitz-continuous mapping of C into H and let {Si}N

i=1 be N nonexpansive
mappings of C into itself such that

⋂N
i=1 F (Si) ∩ V I(C, A) 6= ∅. Let {xn}, {yn} and {zn} be

sequences generated by

x0 = x ∈ C,
yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),
tn = PC(xn − λnAyn − λn(1− µn)Atn),
zn = αnxn + (1− αn)Sntn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(3.1)

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q = P⋂N

i=1
F (Si)∩V I(C,A)

x.

Remark 3.1. First, observe that for all x, y ∈ C and all n ≥ 0

‖PC(xn − λnµAxn − λn(1− µn)Ax)− PC(xn − λnµAxn − λn(1− µn)Ay)‖
≤ ‖(xn − λnµnAxn − λn(1− µn)Ax)− (xn − λnµnAxn − λn(1− µn)Ay)‖
= λn(1− µn)‖Ax− Ay‖
≤ λnk‖x− y‖.
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Thus, by Banach Contraction Principle, we know that for each n ≥ 0 there exists a unique
yn ∈ C such that

yn = PC(xn − λnµnAxn − λn(1− µn)Ayn). (3.2)

Also, observe that for all x, y ∈ C and all n ≥ 0

‖PC(xn − λnAyn − λn(1− µn)Ax)− PC(xn − λnAyn − λn(1− µn)Ay)‖
≤ ‖(xn − λnAyn − λn(1− µn)Ax)− (xn − λnAyn − λn(1− µn)Ay)‖
= λn(1− µn)‖Ax− Ay‖
≤ λnk‖x− y‖.

Utilizing Banach Contraction Principle, we know that for each n ≥ 0 there exists a unique
tn ∈ C such that

tn = PC(xn − λnAyn − λn(1− µn)Atn). (3.3)

Proof of Theorem 3.1. We divide the proof into several steps.

Step 1. We claim that every Cn is closed and convex, and that
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂
Cn ∀n ≥ 0.

Indeed, it is obvious that Cn is closed for all n ≥ 0. Since

Cn = {z ∈ C : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ 0},

we deduce that Cn is convex for all n ≥ 0. Note that tn = PC(xn−λnAyn−λn(1−µn)Atn) for
all n ≥ 0. Let u ∈ ⋂N

i=1 F (Si) ∩ V I(C, A) be an arbitrary element. From (2.2), monotonicity
of A, and u ∈ V I(C, A), we have

‖tn − u‖2 ≤ ‖(xn − λnAyn − λn(1− µn)Atn)− u‖2

− ‖(xn − λnAyn − λn(1− µn)Atn)− tn‖2

= ‖xn − λn(1− µn)Atn − u‖2

− ‖xn − λn(1− µn)Atn − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖xn − λn(1− µn)Atn − u‖2 − ‖xn − λn(1− µn)Atn − tn‖2

+ 2λn(〈Ayn, u− yn〉+ 〈Ayn, yn − tn〉)
= ‖xn − λn(1− µn)Atn − u‖2 − ‖xn − λn(1− µn)Atn − tn‖2

+ 2λn(〈Ayn − Au, u− yn〉+ 〈Au, u− yn〉+ 〈Ayn, yn − tn〉)
≤ ‖xn − λn(1− µn)Atn − u‖2 − ‖xn − λn(1− µn)Atn − tn‖2

+ 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − tn‖2 − 2λn(1− µn)〈Atn, tn − u〉

+ 2λn〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+ 2λn〈Ayn, yn − tn〉 − 2λn(1− µn)(〈Atn − Au, tn − u〉
+ 〈Au, tn − u〉)

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2〈xn − λnAyn − yn, tn − yn〉.
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Further, since yn = PC(xn − λnµnAxn − λn(1− µn)Ayn) and A is k-Lipschitz-continuous, we
have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnµnAxn − λn(1− µn)Ayn − yn, tn − yn〉+ λnµn〈Axn − Ayn, tn − yn〉
≤ λnµn〈Axn − Ayn, tn − yn〉
≤ λnk‖xn − yn‖‖tn − yn‖.

So, we have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + λ2

nk
2‖xn − yn‖2 + ‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk

2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2.

(3.4)

Therefore, from (3.4), zn = αnxn + (1− αn)Sntn, and u = Snu, we have

‖zn − u‖2 = ‖αnxn + (1− αn)Sntn − u‖2

= ‖αn(xn − u) + (1− αn)(Sntn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Sntn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)[‖xn − u‖2 + (λ2
nk

2 − 1)‖xn − yn‖2]
= ‖xn − u‖2 + (1− αn)(λ2

nk
2 − 1)‖xn − yn‖2

≤ ‖xn − u‖2

(3.5)

for all n ≥ 0 and hence u ∈ Cn. So,
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Cn for all n ≥ 0.

Step 2. We claim that {xn} is well defined and
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Cn ∩Qn for all
n ≥ 0.

Indeed, let us show by mathematical induction that {xn} is well defined and
⋂N

i=1 F (Si)∩
V I(C, A) ⊂ Cn ∩ Qn for all n ≥ 0. First, it is obvious that Qn is closed and convex for all
n ≥ 0. As Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0}, we have 〈xn − z, x − xn〉 ≥ 0 for all z ∈ Qn

and, by (2.1), xn = PQnx. Second, according to Remark 3.1 we know that for each n ≥ 0
there exist a unique yn ∈ C and a unique tn ∈ C such that (3.2) and (3.3) hold, respectively.
For n = 0 we have Q0 = C. Hence we obtain

⋂N
i=1 F (Si)∩ V I(C, A) ⊂ C0 ∩Q0. Suppose that

xk is given and
⋂N

i=1 F (Si)∩V I(C, A) ⊂ Ck ∩Qk for some k ≥ 0. Since
⋂N

i=1 F (Si)∩V I(C, A)
is nonempty, Ck ∩ Qk is a nonempty closed convex subset of C. So, there exists a unique
element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

x. It is also obvious that there holds
〈xk+1 − z, x− xk+1〉 ≥ 0 for all z ∈ Ck ∩Qk. Since

⋂N
i=1 F (Si)∩ V I(C, A) ⊂ Ck ∩Qk, we have

〈xk+1−z, x−xk+1〉 ≥ 0 for z ∈ ⋂N
i=1 F (Si)∩V I(C, A) and hence

⋂N
i=1 F (Si)∩V I(C, A) ⊂ Qk+1.

Therefore, we obtain
⋂N

i=1 F (Si) ∩ V I(C, A) ⊂ Ck+1 ∩Qk+1.

Step 3. We claim that the following statements hold:
(1) {xn} is bounded, and limn→∞ ‖xn+i − xn‖ = 0 for each i = 1, 2, ..., N ;
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(2) limn→∞ ‖zn − xn‖ = 0.
Indeed, let q = P⋂N

i=1
F (Si)∩V I(C,A)

x. From xn+1 = PCn∩Qnx and q ∈ ⋂N
i=1 F (Si)∩V I(C, A) ⊂

Cn ∩Qn, we have
‖xn+1 − x‖ ≤ ‖q − x‖ ∀n ≥ 0. (3.6)

Therefore, {xn} is bounded and so are {zn} and {tn} due to (3.4) and (3.5). Since xn+1 ∈
Cn ∩Qn ⊂ Qn and xn = PQnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖ ∀n ≥ 0.

Therefore, there exists limn→∞ ‖xn−x‖. Since xn = PQnx and xn+1 ∈ Qn, using (2.2) we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2 ∀n ≥ 0.

This implies that
lim

n→∞
‖xn+1 − xn‖ = 0,

and hence limn→∞ ‖xn+i − xn‖ = 0 for each i = 1, 2, ..., N . Since xn+1 ∈ Cn, we have
‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖zn − xn‖ ≤ ‖zn − xn+1‖+ ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖ ∀n ≥ 0.

Consequently, from limn→∞ ‖xn+1 − xn‖ = 0, we have limn→∞ ‖zn − xn‖ = 0.

Step 4. We claim that the following statements hold:
(1) limn→∞ ‖xn − yn‖ = 0;
(2) limn→∞ ‖Slxn − xn‖ = 0 for each l = 1, 2, ..., N .
Indeed, for u ∈ ⋂N

i=1 F (Si) ∩ V I(C, A), from (3.5) we derive

‖zn − u‖2 ≤ ‖xn − u‖2 + (1− αn)(λ2
nk

2 − 1)‖xn − yn‖2.

Therefore, we have

‖xn − yn‖2 ≤ 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖2 − ‖zn − u‖2)

= 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖ − ‖zn − u‖)(‖xn − u‖+ ‖zn − u‖)

≤ 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

(3.7)

Since ‖zn−xn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain ‖xn−yn‖ → 0.
By the same process as in (3.4), we also have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + 2λnk‖xn − yn‖‖tn − yn‖
≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2 + ‖xn − yn‖2 + λ2

nk
2‖yn − tn‖2

= ‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2

≤ ‖xn − u‖2,
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and hence {tn}, {Atn} are bounded. Then, in contrast with (3.5),

‖zn − u‖2 = ‖αnxn + (1− αn)Sntn − u‖2

= ‖αn(xn − u) + (1− αn)(Sntn − u)‖2

≤ αn‖xn − u‖2 + (1− αn)‖Sntn − u‖2

≤ αn‖xn − u‖2 + (1− αn)‖tn − u‖2

≤ αn‖xn − u‖2 + (1− αn)(‖xn − u‖2 + (λ2
nk

2 − 1)‖yn − tn‖2)
= ‖xn − u‖2 + (1− αn)(λ2

nk
2 − 1)‖yn − tn‖2

≤ ‖xn − u‖2

and, rearranging as in (3.7),

‖tn − yn‖2 ≤ 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖2 − ‖zn − u‖2)

= 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖ − ‖zn − u‖)(‖xn − u‖+ ‖zn − u‖)

≤ 1
(1−αn)(1−λ2

nk2)
(‖xn − u‖+ ‖zn − u‖)‖xn − zn‖.

Since ‖zn−xn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain ‖tn−yn‖ → 0. As
A is k-Lipschitz-continuous, we have ‖Ayn−Atn‖ → 0. From ‖xn−tn‖ ≤ ‖xn−yn‖+‖yn−tn‖
we also have ‖xn − tn‖ → 0. Since zn = αnxn + (1− αn)Sntn, we have (1− αn)(Sntn − tn) =
αn(tn − xn) + (zn − tn). Then

(1− c)‖Sntn − tn‖ ≤ (1− αn)‖Sntn − tn‖
≤ αn‖tn − xn‖+ ‖zn − tn‖
≤ (1 + αn)‖tn − xn‖+ ‖zn − xn‖

and hence ‖Sntn − tn‖ → 0. Also, observe that

‖Snxn − xn‖ ≤ ‖Snxn − Sntn‖+ ‖Sntn − tn‖+ ‖tn − xn‖
≤ 2‖xn − tn‖+ ‖Sntn − tn‖.

Since ‖xn − tn‖ → 0 and ‖Sntn − tn‖ → 0, we have ‖Snxn − xn‖ → 0. Consequently, we have
for each i = 1, 2, ..., N

‖xn − Sn+ixn‖ ≤ ‖xn − xn+i‖+ ‖xn+i − Sn+ixn+i‖+ ‖Sn+ixn+i − Sn+ixn‖
≤ 2‖xn − xn+i‖+ ‖xn+i − Sn+ixn+i‖

and so limn→∞ ‖xn − Sn+ixn‖ = 0 for each i = 1, 2, ..., N . This implies that for each l =
1, 2, ..., N

lim
n→∞

‖xn − Slxn‖ = 0.

Step 5. We claim that ωw(xn) ⊂ ⋂N
i=1 F (Si) ∩ V I(C, A), where ωw(xn) denotes the weak

ω-limit set of {xn}, i.e.,

ωw(xn) = {u ∈ H : {xnj
} converges weakly to u for some subsequence {nj} of {n}}.

12



Indeed, since {xn} is bounded, it has a subsequence which converges weakly to some point
in C and hence ωw(xn) 6= ∅. Let u ∈ ωw(xn) be an arbitrary point. Then there exists a
subsequence {xnj

} ⊂ {xn} which converges weakly to u and hence we have limj→∞ ‖xnj
−

Slxnj
‖ = 0 for each l = 1, 2, ..., N . Note that from Lemma 2.2 it follows that I − S is

demiclosed at zero. Thus u ∈ F (Sl) for each l = 1, 2, ..., N , i.e., u ∈ ⋂N
i=1 F (Si). Now, we

show u ∈ V I(C, A). Let

Tv =

{
Av + NCv if v ∈ C,
∅ if v 6∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C, A); see [17]. Let (v, w) ∈
G(T ). Then we have w ∈ Tv = Av + NCv and hence w−Av ∈ NCv. So, we have 〈v − t, w−
Av〉 ≥ 0 for all t ∈ C. On the other hand, from tn = PC(xn − λnAyn − λn(1 − µn)Atn) and
v ∈ C we have

〈xn − λnAyn − λn(1− µn)Atn − tn, tn − v〉 ≥ 0

and hence

〈v − tn,
tn − xn

λn

+ Ayn + (1− µn)Atn〉 ≥ 0.

From 〈v − t, w − Av〉 ≥ 0 for all t ∈ C and tnj
∈ C, we have

〈v − tnj
, w〉 ≥ 〈v − tnj

, Av〉
≥ 〈v − tnj

, Av〉 − 〈v − tnj
,

tnj−xnj

λnj
+ Aynj

+ (1− µnj
)Atnj

〉
= 〈v − tnj

, Av − Atnj
〉+ 〈v − tnj

, Atnj
− Aynj

〉
− 〈v − tnj

,
tnj−xnj

λnj
〉 − (1− µnj

)〈v − tnj
, Atnj

〉

≥ 〈v − tnj
, Atnj

− Aynj
〉 − 〈v − tnj

,
tnj−xnj

λnj
〉 − (1− µnj

)〈v − tnj
, Atnj

〉.

So, we obtain 〈v−u, w〉 ≥ 0 as j →∞. Since T is maximal monotone, we have u ∈ T−10 and
hence u ∈ V I(C, A). Therefore, u ∈ ⋂N

i=1 F (Si) ∩ V I(C, A).

Step 6. We claim that {xn}, {yn} and {zn} converge strongly to q = P⋂N

i=1
F (Si)∩V I(C,A)

x.

Indeed, let u ∈ ωw(xn) be an arbitrary point. Then there exists a subsequence {xnj
} ⊂

{xn} which converges weakly to u. By Step 5, we know that u ∈ ⋂N
i=1 F (Si)∩V I(C, A). Hence

from q = P⋂N

i=1
F (Si)∩V I(C,A)

x and (3.6) we derive

‖q − x‖ ≤ ‖u− x‖ ≤ lim inf
j→∞

‖xnj
− x‖ ≤ lim sup

j→∞
‖xnj

− x‖ ≤ ‖q − x‖.

So, we obtain
lim
j→∞

‖xnj
− x‖ = ‖q − x‖.

From xnj
− x ⇀ u − x we have xnj

− x → u − x and hence xnj
→ u. Since xn = PQnx and

q ∈ ⋂N
i=1 F (Si) ∩ V I(C, A) ⊂ Cn ∩Qn ⊂ Qn, we have

−‖q − xnj
‖2 = 〈q − xnj

, xnj
− x〉+ 〈q − xnj

, x− q〉 ≥ 〈q − xnj
, x− q〉.

13



As j → ∞, we get −‖q − u‖2 ≥ 〈q − u, x − q〉 ≥ 0 due to q = P⋂N

i=1
F (Si)∩V I(C,A)

x and

u ∈ ⋂N
i=1 F (Si) ∩ V I(C, A). Thus we have u = q. This implies that xn → q. Consequently,

from ‖xn − yn‖ → 0 and ‖xn − zn‖ → 0 we infer that both {yn} and {zn} converge strongly
to q = P⋂N

i=1
F (Si)∩V I(C,A)

x. This completes the proof. 2

4. Applications

Utilizing Theorem 3.1 in the above section, we prove some strong convergence theorems
in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
a monotone and k-Lipschitz-continuous mapping of C into H such that V I(C, A) 6= ∅. Let
{xn}, {yn} and {zn} be sequences generated by

x0 = x ∈ C,
yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),
tn = PC(xn − λnAyn − λn(1− µn)Atn),
zn = αnxn + (1− αn)tn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q = PV I(C,A)x.

Proof. Putting Si = I (1 ≤ i ≤ N), αn = 0 for all n ≥ 0, by Theorem 3.1 we obtain the
desired result. 2

Remark 4.1. See Iiduka, Takahashi and Toyoda [13] for the case when the mapping A
is α-inverse-strongly-monotone; see Nadezhkina and Takahashi [21, Theorem 4.1] for the case
when the mapping A is monotone, Lipschitz-continuous.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let {Si}N
i=1 be

N nonexpansive mappings of C into itself such that
⋂N

i=1 F (Si) 6= ∅. Let {xn} and {yn} be
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sequences generated by 

x0 = x ∈ C,
yn = αnxn + (1− αn)SnPCxn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and {αn} ⊂ [0, c] for some c ∈ [0, 1). Then the
sequences {xn} and {yn} converge strongly to q = P⋂N

i=1
F (Si)

x.

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result. 2

Remark 4.2. See Nadezhkina and Takahashi [21, Theorem 4.2] for the case when N = 1,
and see also Nakajo and Takahashi [18].

Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone and k-Lipschitz-
continuous mapping of H into itself and let {Si}N

i=1 be N nonexpansive mappings of H into
itself such that

⋂N
i=1 F (Si) ∩ A−10 6= ∅. Let {xn}, {yn} and {zn} be sequences generated by

x0 = x ∈ H,
yn = xn − λnµnAxn − λn(1− µn)Ayn,
tn = xn − λnAyn − λn(1− µn)Atn,
zn = αnxn + (1− αn)Sntn,
Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where Sn = SnmodN , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q = P⋂N

i=1
F (Si)∩A−10

x.

Proof. We have A−10 = V I(H, A) and PH = I. By Theorem 3.1 we obtain the desired
result. 2

Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and r > 0,
consider JB

r x = {z ∈ H : z + rBz 3 x}. Such JB
r x is called the resolvent of B and is denoted

by JB
r = (I + rB)−1.

Theorem 4.4. Let H be a real Hilbert space. Let A be a monotone and k-Lipschitz-
continuous mapping of H into itself and let Bi : H → 2H , i = 1, 2, ..., N be N maximal
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monotone mappings such that
⋂N

i=1 B−1
i 0 ∩A−10 6= ∅. Let JBi

r be the resolvent of Bi for each
r > 0. Let {xn}, {yn} and {zn} be sequences generated by

x0 = x ∈ H,
yn = xn − λnµnAxn − λn(1− µn)Ayn,
tn = xn − λnAyn − λn(1− µn)Atn,
zn = αnxn + (1− αn)JBn

r tn,
Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 0, 1, ..., where JBn
r = JBnmodN

r , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q = P⋂N

i=1
B−1

i 0∩A−10
x.

Proof. We know that JBi
r is nonexpansive for every i = 1, 2, ..., N . We also have A−10 =

V I(H, A) and F (JBi
r ) = B−1

i 0 for every i = 1, 2, ..., N . Putting PH = I, by Theorem 3.1 we
obtain the desired result. 2

We also know one more definition of a pseudocontractive mapping, which is equivalent to
the definition given in the introduction. A mapping T of C into itself is called pseudocontrac-
tive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2

for all x, y ∈ C; see [6]. Obviously, the class of pseudocontractive mappings is more general
than the class of nonexpansive mappings. For the class of pseudocontractive mappings there
are some nontrivial examples; see [21, p.1239] for more details. In the following theorem
we introduce an iterative process that converges strongly to a common fixed point of N +
1 mappings, one of which is Lipschitz-continuous and pseudocontractive, and the rest N
mappings are nonexpansive.

Theorem 4.5. Let C be a closed convex subset of a real Hilbert space H. Let T be a
pseudocontractive and m-Lipschitz-continuous mapping of C into itself , and let {Si}N

i=1 be
N nonexpansive mappings of C into itself such that

⋂N
i=1 F (Si) ∩ F (T ) 6= ∅. Let {xn}, {yn}

and {zn} be sequences generated by

x0 = x ∈ C,
yn = PC(xn − λnµnAxn − λn(1− µn)Ayn),
tn = PC(xn − λnAyn − λn(1− µn)Atn),
zn = αnxn + (1− αn)Sntn,
Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(3.1)
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for every n = 0, 1, ..., where A = I − T , Sn = SnmodN , and the following hold:
(i) {µn} ⊂ (0, 1] and limn→∞ µn = 1;
(ii) {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k);
(iii) {αn} ⊂ [0, c] for some c ∈ [0, 1).

Then the sequences {xn}, {yn} and {zn} converge strongly to q = P⋂N

i=1
F (Si)∩F (T )

x.

Proof. Let A = I − T . Let us show the mapping A is monotone and (m + 1)-Lipschitz-
continuous. Indeed, observe that

〈Ax− Ay, x− y〉 = ‖x− y‖2 − 〈Tx− Ty, x− y〉 ≥ 0,

and

‖Ax− Ay‖ = ‖x− y − (Tx− Ty)‖ ≤ ‖x− y‖+ ‖Tx− Ty‖ ≤ (m + 1)‖x− y‖.

Now let us show F (T ) = V I(C, A). Indeed, we have, for fixed λ0 ∈ (0, 1),

Tu = u ⇔ u = u− λ0Au = PC(u− λ0Au) ⇔ 〈Au, y − u〉 ≥ 0 ∀y ∈ C.

By Theorem 3.1 we obtain the desired result. 2

References

[1] A. S. ANTIPIN, Methods for solving variational inequalities with related constraints,
Comput. Math. Math. Phys., 40 (2000), pp. 1239-1254.

[2] A. S. ANTIPIN AND F. P. VASILIEV, Regularized prediction method for solving varia-
tional inequalities with an inexactly given set, Comput. Math. Math. Phys., 44 (2004),
pp. 750-758.

[3] R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators,
Trans. Amer. Math. Soc., 149 (1970), pp. 75-88.

[4] R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J.
Control Optim., 14 (1976), 877-898.

[5] R. S. BURACHIK, J. O. LOPES, AND B. F. SVAITER, An outer approximation method
for the variational inequality problem, SIAM J. Control Optim., 43 (2005), pp. 2071-2088.

[6] F. E. BROWDER AND W. V. PETRYSHYN, Construction of fixed points of nonlinear
mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), pp. 197-228.

[7] K. GEOBEL AND W. A. KIRK, Topics on Metric Fixed-Point Theory, Cambridge Uni-
versity Press, Cambridge, England, 1990.

[8] I. YAMADA, The hybrid steepest-descent method for the variational inequality problem
over the intersection of fixed-point sets of nonexpansive mappings, in Inherently Paral-
lel Algorithms in Feasibility and Optimization and Their Applications, D. Butnariu, Y.
Censor, and S. Reich, eds., Kluwer Academic, Dordrecht, The Netherlands, 2001, pp.
473-504.

17



[9] W. TAKAHASHI AND M. TOYODA, Weak convergence theorems for nonexpansive map-
pings and monotone mappings, J. Optim. Theory Appl., 118 (2003), pp. 417-428.

[10]R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-
Verlag, New York, 1984.

[11]B.-S. HE, Z.-H. YANG, AND X.-M. YUAN, An approximate proximal-extragradient type
method for monotone variational inequalities, J. Math. Anal. Appl., 300 (2004), pp. 362-
374.

[12]H. IIDUKA AND W. TAKAHASHI, Strong convergence theorem by a hybrid method for
nonlinear mappings of nonexpansive and monotone type and applications, Adv. Nonlinear
Var. Inequal., 9 (2006), pp. 1-10.

[13]H. IIDUKA, W. TAKAHASHI, AND M. TOYODA, Approximation of solutions of vari-
ational inequalities for monotone mappings, Panamer. Math. J., 14 (2004), pp. 49-61.

[14]D. KINDERLEHRER AND G. STAMPACCHIA, An Introduction to Variational Inequal-
ities and Their Applications, Academic Press, New York, 1980.

[15]G. M. KORPELEVICH, The extragradient method for finding saddle points and other
problems, Matecon, 12 (1976), pp. 747-756.
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