

SEPARATING LINEAR MAPS OF CONTINUOUS FIELDS OF BANACH SPACES*

Chi-Wai Leung

Department of Mathematics The Chinese University of Hong Kong, Hong Kong cwleung@math.cuhk.edu.hk

Chung-Wen Tsai[†] and Ngai-Ching Wong[‡]

Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan [†]tsaicw@math.nsysu.edu.tw, [‡]wong@math.nsysu.edu.tw

In this paper, we give a complete description of the structure of separating linear maps between continuous fields of Banach spaces. Some automatic continuity results are obtained.

Keywords: Separating linear maps; automatic continuity; continuous fields of Banach spaces; Banach bundles.

AMS Subject Classification: 46L40, 46H40, 46E40

1. Introduction

Let T be a locally compact Hausdorff space, called *base space*. Suppose for each t in T there is a (real or complex) Banach space E_t . A vector field x is an element in the product space $\prod_{t \in T} E_t$, that is, $x(t) \in E_t$, for all $t \in T$.

Definition 1.1 ([5,3]). A continuous field $\mathcal{E} = (T, \{E_t\}, \mathcal{A})$ of Banach spaces over a locally compact space T is a family $\{E_t\}_{t \in T}$ of Banach spaces, with a set \mathcal{A} of vector fields, satisfying the following conditions.

- (i) \mathcal{A} is a vector subspace of $\prod_{t \in T} E_t$.
- (ii) For every t in T, the set of all x(t) with x in A is dense in E_t .
- (iii) For every x in \mathcal{A} , the function $t \mapsto ||x(t)||$ is continuous on T and vanishes at infinity.

*This work is jointly supported by Hong Kong RGC Research Grant (2160255), and Taiwan NSC grant (NSC96-2115-M-110-004-MY3).

- 446 C.-W. Leung, C.-W. Tsai & N.-C. Wong
- (iv) Let x be a vector field. Suppose for every t in T and every $\epsilon > 0$, there is a neighborhood U of t and a y in A such that $||x(s) y(s)|| < \epsilon$ for all s in U. Then $x \in A$.

Elements in \mathcal{A} are called *continuous vector fields*.

When all E_t equal to a fixed Banach space E, and \mathcal{A} consists of all continuous functions from T into E vanishing at infinity, we call \mathcal{E} a *constant field*. In this case, we write $\mathcal{A} = C_0(T, E)$, or $\mathcal{A} = C(T, E)$ when T is compact, as usual.

It is not difficult to see that \mathcal{A} becomes a Banach space under the norm $||x|| = \sup_{t \in T} ||x(t)||$. If g is a bounded continuous scalar-valued function on T, and $x \in \mathcal{A}$, then $t \mapsto g(t)x(t)$ defines a continuous vector field gx on T. The set of all x(t) with x in \mathcal{A} coincides with E_t for every t in T. Moreover, for any distinct points s, t in T and any α in E_s and β in E_t , there is a continuous vector field x such that $x(s) = \alpha$ and $x(t) = \beta$ (see, e.g., [5, 12]).

A map $\theta : \mathcal{A} \to \mathcal{B}$ is called a homomorphism between two continuous fields of Banach spaces $(X, \{E_x\}_x, \mathcal{A})$ and $(Y, \{F_y\}, \mathcal{B})$ if there is a map $\varphi : Y \to X$ and a linear map $H_y : E_{\varphi(y)} \to F_y$ for each y in Y such that

$$\theta(f)(y) = H_y(f(\varphi(y))), \quad \text{for all } f \in \mathcal{A}, \text{ for all } y \in Y.$$
 (1.1)

A map θ is said to be *separating* (or *strictly separating* as in [1]) if

$$||f(x)||||g(x)|| = 0$$
, for all $x \in X$, implies $||\theta(f)(y)||||\theta(g)(y)|| = 0$, for all $y \in Y$.

The study of when a separating linear map is a homomorphism has been the focus of much research in the past. For example, in [10], Jarosz gives a complete description of an unbounded separating linear map $\theta : C(X) \to C(Y)$, where X, Y are compact Hausdorff spaces, and this is extended to locally compact spaces in [7, 11]. On the other hand, Jamison and Rajagopalan [9] show that every bounded separating linear map $\theta : C(X, E) \to C(Y, F)$ between continuous vector valued function spaces carries a standard form (1.1). Chan [2] extends this to bounded separating linear maps between two function modules.

In this paper, we present a complete description of separating linear maps θ : $\mathcal{A} \to \mathcal{B}$ between continuous fields of Banach spaces $(X, \{E_x\}_x, \mathcal{A})$ and $(Y, \{F_y\}, \mathcal{B})$ on locally compact Hausdorff base spaces. Essentially, these maps carry the standard form (1.1). In case θ is bijective, and both θ and θ^{-1} are separating, we shall see that $\varphi: Y \to X$ is a homeomorphism. Moreover, θ , as well as the fiber linear maps H_y , is automatically bounded in many situations. Our results unify and extend those shown in [9, 10, 2, 7, 11, 1, 8].

Another example of continuous fields of Banach spaces comes from *Banach bun*dles. (The readers are referred to [4, 6] for the definitions.) For a Banach bundle $\xi = (p, E, T)$, define $\Gamma_0(\xi)$ to be the set of all continuous cross sections of ξ which vanishes at infinity. In this case, we write $\mathcal{E} = (T, \{E_t\}, \Gamma_0(\xi))$. It is not difficult to see that $\Gamma_0(\xi)$ satisfies the conditions (i), (iii), (iv) in Definition 1.1. We refer to Appendix C in [6] where it is shown that if T is locally compact, then for any point x in E there is a continuous cross section f such that f(p(x)) = x. Thus, condition (ii) follows. Therefore, all results in this paper apply to Banach bundles. For further development in this line, readers are referred to [13].

2. The results

For a locally compact Hausdorff space X, we write

$$X_{\infty} = X \cup \{\infty\},\$$

for its one-point compactification. If X is already compact, then the point ∞ at infinity is an isolated point in X_{∞} . Moreover, we identify

$$C_0(X) = \{ f \in C(X_\infty) : f(\infty) = 0 \},\$$

and other similar spaces for those of continuous functions on X vanishing at infinity. For a continuous field $(X, \{E_x\}_x, \mathcal{A})$ of Banach spaces, set for each x in X the sets

$$I_x = \{ f \in \mathcal{A} : f \text{ vanishes in a neighborhood in } X_\infty \text{ of } x \},\$$
$$M_x = \{ f \in \mathcal{A} : f(x) = 0 \}.$$

Theorem 2.1. Let $\theta : \mathcal{A} \to \mathcal{B}$ be a separating linear map between continuous fields of Banach spaces $(X, \{E_x\}, \mathcal{A}), (Y, \{F_y\}, \mathcal{B})$ over locally compact Hausdorff spaces X, Y, respectively. Set

$$Y_0 = \bigcap \{ \ker \theta(f) : f \in \mathcal{A} \}.$$

Then, $\infty \in Y_0$ is compact and there is a continuous map $\varphi : Y \setminus Y_0 \to X_\infty$ such that

$$\theta(I_{\varphi(y)}) \subseteq I_y, \quad \text{for all } y \in Y \setminus Y_0.$$

Set

$$Y_1 = \{ y \in Y \setminus Y_0 : \theta(M_{\varphi(y)}) \subseteq M_y \}, Y_2 = \{ y \in Y \setminus Y_0 : \theta(M_{\varphi(y)}) \notin M_y \}.$$

Then there is a linear map $H_y: E_{\varphi(y)} \to F_y$ for each y in Y_1 such that

$$\theta(f)(y) = H_y(f(\varphi(y))), \quad \text{for all } y \in Y_1.$$

The exceptional set Y_2 is open in Y_{∞} , and $\varphi(Y_2)$ consists of finitely many nonisolated points in X_{∞} .

Moreover, θ is bounded if and only if $Y_2 = \emptyset$ and all H_y are bounded. In this case,

$$\|\theta\| = \sup_{y \in Y} \|H_y\|.$$

We divide the proof into several lemmas as in [10, 11]. Clearly, Y_0 is compact and contains ∞ . For each y in $Y \setminus Y_0$, let

$$Z_y = \{ x \in X_\infty : \theta(I_x) \subseteq I_y \}.$$

448 C.-W. Leung, C.-W. Tsai & N.-C. Wong

Lemma 2.1. Z_y is a singleton, for all y in $Y \setminus Y_0$.

Proof. Suppose on the contrary that $Z_y = \emptyset$ for some y in $Y \setminus Y_0$. Then for each x in X_∞ there is an f_x in I_x vanishing in a compact neighborhood U_x of x such that $\theta(f_x) \notin I_y$. By compactness,

$$X_{\infty} = U_{x_0} \cup U_{x_1} \cup \dots \cup U_{x_n}$$

for some points $x_0 = \infty, x_1, \ldots, x_n$ in X_{∞} . Let

$$1 = h_0 + h_1 + \dots + h_n$$

be a continuous partition of unity such that h_i vanishes outside U_{x_i} for $i = 0, 1, \ldots, n$. For any g in \mathcal{A} , the separating property of θ implies that the product of the norm functions of $\theta(h_i g)$ and $\theta(f_{x_i})$ is always zero, and then

$$\theta(f_{x_i}) \notin I_y$$
 implies $\theta(h_i g)(y) = 0, \quad i = 0, 1, \dots, n.$

Hence, $\theta(g)(y) = 0$ for all $g \in \mathcal{A}$. This gives a contradiction that $y \in Y_0$.

Next let x_1, x_2 be distinct points in Z_y . In other words, $\theta(I_{x_i}) \subseteq I_y$ for i = 1, 2. Choose compact neighborhoods V, U of x_1 in X_∞ such that V is contained in the interior of U, and $x_2 \notin U$. Let $g \in C(X_\infty)$ such that g = 1 on V and g = 0 outside U. Then for all f in \mathcal{A} , the facts $(1-g)f \in I_{x_1}$ and $gf \in I_{x_2}$ ensure that $\theta(f) \in I_y$. In particular, $y \in Y_0$, a contradiction again.

Define a map $\varphi: Y \setminus Y_0 \to X_\infty$ by

$$Z_y = \{\varphi(y)\}.$$

In other words, $\theta(I_{\varphi(y)}) \subseteq I_y$, or

$$f \in I_{\varphi(y)}$$
 implies $\theta(f) \in I_y$, for all $y \in Y \setminus Y_0$. (2.1)

Lemma 2.2. $\varphi: Y \setminus Y_0 \to X_\infty$ is continuous.

Proof. Suppose $y_{\lambda} \to y$ in $Y \setminus Y_0$, but $x_{\lambda} = \varphi(y_{\lambda}) \to x \neq \varphi(y)$. By Lemma 2.1, $\theta(I_x) \notin I_y$. Let $U_x, U_{\varphi(y)}$ be disjoint compact neighborhoods of $x, \varphi(y)$, respectively. Let $g \in C(X_{\infty})$ such that g = 1 on U_x and g = 0 on $U_{\varphi(y)}$. Since $x_{\lambda} \to x$, for all f in A, (1-g)f is eventually in $I_{x_{\lambda}}$. Thus, $\theta((1-g)f) \in I_{y_{\lambda}}$ eventually. By the continuity of the norm function, $\theta((1-g)f)(y) = 0$. On the other hand, $gf \in I_{\varphi(y)}$ implies $\theta(gf) \in I_y$. Hence, $\theta(f)(y) = 0$ for all $f \in A$. This gives $y \in Y_0$, a contradiction.

Denote by δ_y the evaluation map at y in Y, i.e.,

$$\delta_y(g) = g(y) \in F_y, \quad \text{ for all } g \in \mathcal{B}.$$

Lemma 2.3. Let $\{y_n\}$ be a sequence in $Y \setminus Y_0$ such that $\varphi(y_n)$ are distinct points in X_{∞} . Then

$$\limsup \|\delta_{y_n} \circ \theta\| < +\infty.$$

Proof. Suppose not, by passing to a subsequence if necessary, we can assume the norm $\|\delta_{y_n} \circ \theta\| > n^4$, and there is an f_n in \mathcal{A} such that $\|f_n\| \leq 1$ and $\|\theta(f_n)(y_n)\| > n^3$, for $n = 1, 2, \ldots$. Let $x_n = \varphi(y_n)$ and V_n, U_n be compact neighborhoods of x_n in X_∞ such that V_n is contained in the interior of U_n , and $U_n \cap U_m = \emptyset$, for distinct $n, m = 1, 2, \ldots$. Let $g_n \in C(X_\infty)$ such that $g_n = 1$ on V_n and $g_n = 0$ outside U_n for $n = 1, 2, \ldots$.

$$\theta(f_n)(y_n) = \theta(g_n f_n)(y_n) + \theta((1 - g_n) f_n)(y_n)$$

= $\theta(g_n f_n)(y_n)$, as $(1 - g_n) f_n \in I_{x_n}$.

So we can assume f_n is supported in U_n , for n = 1, 2, ... Let

$$f = \sum_{n=1}^{\infty} \frac{1}{n^2} f_n \in \mathcal{A}$$

Since $n^2 f - f_n \in I_{x_n}$, we have $n^2 \theta(f)(y_n) = \theta(f_n)(y_n)$ by (2.1), and thus $\|\theta(f)(y_n)\| > n$, for n = 1, 2, ... As $\theta(f)$ in \mathcal{B} has a bounded norm, we arrive at a contradiction.

Set

$$Y_1 = \{ y \in Y \setminus Y_0 : \theta(M_{\varphi(y)}) \subseteq M_y \}, Y_2 = \{ y \in Y \setminus Y_0 : \theta(M_{\varphi(y)}) \notin M_y \}.$$

Lemma 2.4. $\varphi(Y_2)$ is a finite set consisting of non-isolated points in X_{∞} .

Proof. Let $x = \varphi(y)$ with y in Y₂. Then by (2.1) we have

 $\theta(I_x) \subseteq I_y$ but $\theta(M_x) \not\subseteq M_y$.

Since, by Uryshons Lemma, I_x is dense in M_x , this implies the linear operator $\delta_y \circ \theta$ is unbounded. By Lemma 2.3, we can only have finitely many of such x's. So $\varphi(Y_2)$ is a finite set. Moreover, if x is an isolated point in X_∞ then $I_x = M_x$, and thus $x \notin \varphi(Y_2)$.

Proof. [Proof of Theorem 2.1] Let $y \in Y_1$, we have $\theta(M_{\varphi(y)}) \subseteq M_y$. Hence, there is a linear operator $H_y: E_{\varphi(y)} \to F_y$ such that

$$\theta(f)(y) = H_y(f(\varphi(y))), \quad \text{for all } f \in \mathcal{A}.$$
 (2.2)

Next we want to see that Y_2 is open, or equivalently, $Y_0 \cup Y_1$ is closed in Y_∞ . Let $y_\lambda \to y$ with y_λ in $Y_0 \cup Y_1$. We want to show that $y \in Y_0 \cup Y_1$. Since Y_0 is compact, we might assume $y_\lambda \in Y_1$ for all λ .

In case there is any subnet of $\{\varphi(y_{\lambda})\}$ consisting of only finitely many points, we can assume $\varphi(y_{\lambda}) = \varphi(y)$ for all λ . Then for all f in \mathcal{A} , $f(\varphi(y)) = 0$ implies 450 C.-W. Leung, C.-W. Tsai & N.-C. Wong

 $f(\varphi(y_{\lambda})) = 0$, and thus $\theta(f)(y_{\lambda}) = 0$ for all λ by (2.2). By continuity, $\theta(f)(y) = 0$. Consequently, $\theta(M_{\varphi(y)}) \subseteq M_y$, and thus $y \in Y_0 \cup Y_1$.

In the other case, every subnet of $\{\varphi(y_{\lambda})\}$ contains infinitely many points. Lemma 2.3 asserts that $M = \limsup ||H_{y_{\lambda}}|| < +\infty$. This gives

$$\|\theta(f)(y)\| = \lim \|\theta(f)(y_{\lambda})\| = \lim \|H_{y_{\lambda}}(f(\varphi(y_{\lambda})))\| \le M \|f(\varphi(y))\|.$$

Thus, if $f(\varphi(y)) = 0$ we have $\theta(f)(y) = 0$. Consequently, $y \in Y_0 \cup Y_1$.

Observe that the boundedness of θ implies $Y_2 = \emptyset$. Moreover,

$$\begin{aligned} \|\theta\| &= \sup\{\|\theta(f)\| : f \in \mathcal{A} \text{ with } \|f\| = 1\} \\ &= \sup\{\|H_y(f(\varphi(y)))\| : f \in \mathcal{A} \text{ with } \|f\| = 1, y \in Y_1\} \\ &\leq \sup\{\|H_y\| : y \in Y_1\}. \end{aligned}$$

The reverse inequality is plain.

Finally, we suppose $Y_2 = \emptyset$ and all H_y are bounded. We claim that $\sup ||H_y|| < +\infty$. Otherwise, there is a sequence $\{y_n\}$ in Y_1 such that $\lim_{n\to\infty} ||H_{y_n}|| = +\infty$. By Lemma 2.3, we can assume all $\varphi(y_n) = x$ in X. Let $e \in E_x$ and $f \in \mathcal{A}$ such that f(x) = e. Then

$$||H_{y_n}(e)|| = ||\theta(f)(y_n)|| \le ||\theta(f)||, \quad n = 1, 2, \dots$$

It follows from the uniform boundedness principle that $\sup ||H_{y_n}|| < +\infty$, a contradiction. It is now obvious that θ is bounded.

The following extends the results for constant fields shown in [1, 8].

Theorem 2.2. Let $(X, \{E_x\}, \mathcal{A}), (Y, \{F_y\}, \mathcal{B})$ be continuous fields of Banach spaces over locally compact Hausdorff spaces X, Y, respectively. Let $\theta : \mathcal{A} \to \mathcal{B}$ be a bijective linear map such that both θ and its inverse θ^{-1} are separating. Then there is a homeomorphism φ from Y onto X, and a bijective linear operator $H_y : E_{\varphi(y)} \to F_y$ for each y in Y such that

$$\theta(f)(y) = H_y(f(\varphi(y))), \quad \text{for all } f \in \mathcal{A}, \text{ for all } y \in Y.$$

Moreover, at most finitely many H_y are unbounded, and this can happen only when y is an isolated point in Y. In particular, if X (or Y) contains no isolated point then θ is automatically bounded.

Proof. Since θ is onto, we have $Y_0 = \{\infty\}$. Because both θ, θ^{-1} are separating, there are continuous maps $\varphi: Y \to X_{\infty}$ and $\psi: X \to Y_{\infty}$ such that

$$\theta(I_{\varphi(y)}) \subseteq I_y$$
 and $\theta^{-1}(I_{\psi(x)}) \subseteq I_x$, for all $x \in X, y \in Y$.

In case $\psi(x) \neq \infty$, this gives

$$\theta(I_{\varphi(\psi(x))}) \subseteq I_{\psi(x)} \subseteq \theta(I_x),$$

or

$$I_{\varphi(\psi(x))} \subseteq I_x.$$

It follows $\varphi(\psi(x)) = x$ for all x in X with $\psi(x) \neq \infty$. Similarly, we will have $\psi(\varphi(y)) = y$ for all y in Y with $\varphi(y) \neq \infty$. Set $X_3 = X \setminus \psi^{-1}(\infty)$ and $Y_3 = Y \setminus \varphi^{-1}(\infty)$. It is then easy to see that $\varphi = \psi^{-1}$ induces a homeomorphism from Y_3 onto X_3 . By the bijectivity of θ , the open sets X_3 and Y_3 contain X_1 and Y_1 , respectively.

Next, we want to see that $Y_2 = \emptyset$ and $Y_1 = Y_3 = Y$. Indeed, by Theorem 2.1, $Y_2 \cap Y_3$ is open, and a finite set (as $\varphi(Y_2)$ is). Hence $Y_2 \cap Y_3$ consists of isolated points in Y, and so does $\varphi(Y_2 \cap Y_3)$. It then follows from Lemma 2.4 that $Y_2 \cap Y_3$ is empty. Consequently, $Y_1 = Y_3$ and $\varphi(Y_2) \subseteq \{\infty\}$. Similarly, $X_1 = X_3$ and $\psi(X_2) \subseteq \{\infty\}$. It follows from (2.1) and the injectivity of θ that $\varphi(Y)$, and thus $\varphi(Y_1) = X_1$, is dense in X. As X_1 is closed in X, we see that $X = X_1$ and thus $X_2 = \emptyset$. Correspondingly, $Y = Y_1$ and $Y_2 = \emptyset$. It turns out that φ is a homeomorphism from Y onto X with inverse ψ .

Now $Y = Y_1$ and $X = X_1$ implies that both θ and θ^{-1} can be written as homomorphisms of continuous fields of Banach spaces:

$$\theta(f)(y) = H_y(f(\varphi(y))), \quad \text{for all } f \in \mathcal{A}, \text{ for all } y \in Y,$$

 $\theta^{-1}(g)(x) = T_x(g(\psi(x))), \quad \text{for all } g \in \mathcal{B}, \text{ for all } x \in X.$

It is easy to see that the linear map $H_y : E_{\varphi(y)} \mapsto F_y$ has an inverse $T_{\varphi(y)}$ for every y in Y, and thus it is bijective.

By Lemma 2.3, at most finitely many H_y are unbounded. Let y be a non-isolated point in Y. We will show that the linear map H_y is bounded. Suppose not, then for each n = 1, 2, ... there is an f_n in \mathcal{A} of norm one such that $\|\theta(f_n)(y)\| =$ $\|H_y(f_n(\varphi(y)))\| > n^4$. By the continuity of the norm of $\theta(f_n)$, there are all distinct points y_n of Y in a neighborhood of y such that $\|\theta(f_n)(y_n)\| > n^3$. Let $x_n = \varphi(y_n)$ in X for n = 1, 2, ... Since φ is a homeomorphism, we can also assume that all x_n are distinct with disjoint compact neighbourhoods U_n . By multiplying with a norm one continuous scalar function, we can assume each f_n is supported in U_n . Let $f = \sum_n \frac{1}{n^2} f_n$ in \mathcal{A} . Since $n^2 f - f_n \in I_{x_n}$, we have $n^2 \theta(f)(y_n) = \theta(f_n)(y_n)$ and thus $\|\theta(f)(y_n)\| > n$ for n = 1, 2, ... This contradiction tells us that H_y is bounded for all non-isolated y in Y_1 .

The last assertion follows from Theorem 2.1, and we have $\|\theta\| = \sup \|H_y\| < +\infty$.

Remark 2.1.

- (1) Unlike the scalar case, if any fiber E_x of the continuous field of Banach spaces $(X, \{E_x\}, \mathcal{A})$ is of infinite dimension, some H_y can be unbounded in Theorem 2.2. This happens even for the constant fields based on compact spaces. See Example 2.4 in [8].
- (2) There is a counterexample in ([8], Example 3.1) of a continuous bijective separating linear map between constant fields based on nonhomeomorphic compact

452 C.-W. Leung, C.-W. Tsai & N.-C. Wong

spaces, whose inverse is not separating. So the biseparating assumption in Theorem 2.2 cannot be dropped.

Acknowledgment

We would like to express our gratitude to the referee for many helpful comments in improving the presentation of this paper.

References

- J. Araujo and K. Jarosz, Automatic continuity of biseparating maps, *Studia Math.*, 155 (2003) 231–239.
- J. T. Chan, Operators with the disjoint support property, J. Operator Theory, 24 (1990) 383–391.
- J. Diximier, C*-algebras, North-Holland publishing company, Amsterdam–New York– Oxford, 1977.
- 4. M. J. Dupré and R. M. Gillette, Banach bundles, Banach modules and automorphisms of C*-algebras, Pitman Research Notes in Mathematics Series 92, 1983.
- J. M. G. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961) 233–280.
- J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Volume 1, Academic, New York (1988).
- J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel), 63 (1994) 158–165.
- H.-L. Gau, J.-S. Jeang and N.-C. Wong, Biseparating linear maps between continuous vector-valued function spaces, J. Australian Math. Soc., Series A, 74 no. 1 (2003) 101–111.
- 9. J. E. Jamison and M. Rajagopalan, Weighted composition operator on C(X, E), J. Operator Theory, **19** (1988) 307–317.
- K. Jarosz, Automatic continuity of separating linear isomorphisms, *Canad. Math. Bull.*, **33** (1990) 139–144.
- 11. J.-S. Jeang and N.-C. Wong, Weighted composition operators of $C_0(X)$'s, J. Math. Anal. Appl. **201** (1996) 981–993.
- R.-Y. Lee, On the C*-algebras of operator fields, *Indiana Univ. Math. J.* 25 no. 4 (1978) 303–314.
- 13. C.-W. Leung, C.-K. Ng and N.-C. Wong, Automatic Continuity and $C_0(\Omega)$ -Linearity of Linear Maps Between $C_0(\Omega)$ -Modules, preprint.